Câu hỏi:

13/07/2024 656

Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi: \(\left\{ {\begin{array}{*{20}{l}}{{u_1} = 1}\\{{u_{n + 1}} = \frac{1}{2}{u_n} + \frac{3}{2};\,\,\forall n \in {\mathbb{N}_*}}\end{array}} \right..\) Giới hạn của dãy \(\left( {{u_n}} \right)\) là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đặt \({u_n} = {v_n} + 3\,\,\forall n \in {\mathbb{N}^*}\), thì \({v_1} = {u_1} - 3 =  - 2.\)

Khi đó \({u_{n + 1}} = \frac{1}{2}{u_n} + \frac{3}{2} \Leftrightarrow {v_{n + 1}} + 3 = \frac{1}{2}\left( {{v_n} + 3} \right) + \frac{3}{2} \Leftrightarrow {v_{n + 1}} = \frac{1}{2}{v_n},\,\,\forall n \in {\mathbb{N}^*}\).

Do đó, dãy \(\left( {{v_n}} \right)\) là một cấp số nhân với \({v_1} =  - 2\,;\,\,q = \frac{1}{2}\).

Do đó \({v_n} =  - 2 \cdot {\left( {\frac{1}{2}} \right)^{n - 1}} =  - {\left( {\frac{1}{2}} \right)^{n - 2}} \Rightarrow {u_n} = 3 - {\left( {\frac{1}{2}} \right)^{n - 2}} \Rightarrow \mathop {\lim }\limits_{n \to  + \infty } {u_n} = 3.{\rm{ }}\)

Đáp án: 3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giả sử Học sinh chơi bóng đá".

Học sinh chơi bóng chuyền".

\(A \cup B = \)"Học sinh chơi bóng đá hoặc bóng chuyền".

\(A \cap B = \)"Học sinh chơi cả hai môn".

Số phần tử của \(A \cup B\) là: \(25 + 20 - 10 = 35.\)

Số học sinh chơi bóng đá hoặc bóng chuyền là số học sinh của lớp là 35.

Đáp án: 35.

Lời giải

Ta có: \( - 1 \le \cos \left( {\frac{\pi }{{10}}t} \right) \le 1 \Leftrightarrow  - 90 \le 90\cos \left( {\frac{\pi }{{10}}t} \right) \le 90 \Leftrightarrow  - 90 \le h\left( t \right) \le 90.\)

Chiều cao của sóng (khoảng cách theo phương thẳng đứng giữa đáy và đỉnh của sóng) là:

\(90 - \left( { - 90} \right) = 180\,\,\left( {cm} \right).\)  Chọn D.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP