Câu hỏi:
13/07/2024 295
Cho a, b là hai số thực dương thoả mãn\({\log _{3a + 2b + 1}}\left( {9{a^2} + {b^2} + 1} \right) + {\log _{6ab + 1}}(3a + 2b + 1) = 2.\)Giá trị của \(a + 3b\) bằng
Cho a, b là hai số thực dương thoả mãn\({\log _{3a + 2b + 1}}\left( {9{a^2} + {b^2} + 1} \right) + {\log _{6ab + 1}}(3a + 2b + 1) = 2.\)Giá trị của \(a + 3b\) bằng
Quảng cáo
Trả lời:
Ta có \({\left( {3a - b} \right)^2} \ge 0 \Leftrightarrow 9{a^2} - 6ab + {b^2} \ge 0 \Leftrightarrow 9{a^2} + {b^2} \ge 6ab\)
Do đó \(2 = {\log _{3a + 2b + 1}}\left( {9{a^2} + {b^2} + 1} \right) + {\log _{6ab + 1}}\left( {3a + 2b + 1} \right)\)
\( \ge {\log _{3a + 2b + 1}}\left( {6ab + 1} \right) + {\log _{6ab + 1}}\left( {3a + 2b + 1} \right)\)
\( \ge 2\sqrt {{{\log }_{3a + 2b + 1}}\left( {6ab + 1} \right) \cdot {{\log }_{6ab + 1}}\left( {3a + 2b + 1} \right)} = 2\).
Dấu bằng xảy ra khi và chỉ khi: \(\left\{ {\begin{array}{*{20}{l}}{3a - b = 0}\\{{{\log }_{3a + 2b + 1}}\left( {6ab + 1} \right) = 1}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{b = 3a}\\{6ab + 1 = 3a + 2b + 1}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{b = 3a}\\{6a \cdot 3a + 1 = 3a + 2.3a + 1}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{b = 3a}\\{18{a^2} - 9a = 0}\end{array}} \right.} \right.} \right.\)
\( \Leftrightarrow (a\,;\,\,b) = \left( {\frac{1}{2}\,;\,\,\frac{3}{2}} \right)\). Do đó \(a + 3b = \frac{1}{2} + 3 \cdot \frac{3}{2} = \frac{{10}}{2} = 5.\)
Đáp án: 5.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giả sử Học sinh chơi bóng đá".
Học sinh chơi bóng chuyền".
\(A \cup B = \)"Học sinh chơi bóng đá hoặc bóng chuyền".
\(A \cap B = \)"Học sinh chơi cả hai môn".
Số phần tử của \(A \cup B\) là: \(25 + 20 - 10 = 35.\)
Số học sinh chơi bóng đá hoặc bóng chuyền là số học sinh của lớp là 35.
Đáp án: 35.
Lời giải
Ta có: \( - 1 \le \cos \left( {\frac{\pi }{{10}}t} \right) \le 1 \Leftrightarrow - 90 \le 90\cos \left( {\frac{\pi }{{10}}t} \right) \le 90 \Leftrightarrow - 90 \le h\left( t \right) \le 90.\)
Chiều cao của sóng (khoảng cách theo phương thẳng đứng giữa đáy và đỉnh của sóng) là:
\(90 - \left( { - 90} \right) = 180\,\,\left( {cm} \right).\) Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.