Câu hỏi:
13/07/2024 183
Cho các số phức \[z\,,\,\,w\] thoả mãn \(\left| z \right| = 2\) và \(\left| {w - 3 + 2i} \right| = 1.\) Tìm giá trị lớn nhất của \(\left| {{z^2} - 2zw - 4} \right|.\)
Cho các số phức \[z\,,\,\,w\] thoả mãn \(\left| z \right| = 2\) và \(\left| {w - 3 + 2i} \right| = 1.\) Tìm giá trị lớn nhất của \(\left| {{z^2} - 2zw - 4} \right|.\)
Quảng cáo
Trả lời:
Tập hợp các điểm biểu diễn số phức \(z\) là đường tròn tâm \({I_1}\left( {0\,;\,\,0} \right)\), bán kính \({R_1} = 2.\)
Tập hợp các điểm biểu diễn số phức \(w\) là đường tròn tâm \({I_2}\left( {3\,;\,\, - 2} \right)\), bán kính \({R_2} = 1.\)
Gọi \(M\left( z \right),\,\,N\left( w \right) \Rightarrow M \in \left( {{C_1}} \right)\) và \(N \in \left( {{C_2}} \right).\)
Ta có \(\left| {{z^2} - 2zw - 4} \right| = {\left. {\left| {{z^2} - 2zw - } \right|z} \right|^2}| = \left| {{z^2} - 2zw - z \cdot \bar z} \right|\)
\[ = \left| {z \cdot \left( {z - 2w - \bar z} \right)} \right| = \left| z \right| \cdot \left| {z - \bar z - 2w} \right| = 2\left| {z - \bar z - 2w} \right|\] \( = 2\left| {\left( {x + yi} \right) - \left( {x - yi} \right) - 2w} \right| = 2\left| {2yi - 2w} \right| = 4\left| {yi - w} \right| = 4HN\).
Với \[H\left( {0\,;\,\,y} \right)\] nằm trên đường tròn \(\left( {{C_1}} \right).\)
Do đó \(H{N_{\max }} = 6\) với \(H\left( {0\,;\,\,2} \right)\) và \(N\) là giao điểm của \(H{I_2}\) với \(\left( {{C_2}} \right).\)
Vậy giá trị lớn nhất của \(\left| {{z^2} - 2zw - 4} \right|\) bằng 24 .
Đáp án: 24.
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giả sử Học sinh chơi bóng đá".
Học sinh chơi bóng chuyền".
\(A \cup B = \)"Học sinh chơi bóng đá hoặc bóng chuyền".
\(A \cap B = \)"Học sinh chơi cả hai môn".
Số phần tử của \(A \cup B\) là: \(25 + 20 - 10 = 35.\)
Số học sinh chơi bóng đá hoặc bóng chuyền là số học sinh của lớp là 35.
Đáp án: 35.
Lời giải
Ta có: \( - 1 \le \cos \left( {\frac{\pi }{{10}}t} \right) \le 1 \Leftrightarrow - 90 \le 90\cos \left( {\frac{\pi }{{10}}t} \right) \le 90 \Leftrightarrow - 90 \le h\left( t \right) \le 90.\)
Chiều cao của sóng (khoảng cách theo phương thẳng đứng giữa đáy và đỉnh của sóng) là:
\(90 - \left( { - 90} \right) = 180\,\,\left( {cm} \right).\) Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.