Cho hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) có đạo hàm liên tục trên khoảng \(\left( {0\,;\,\, + \infty } \right)\) đồng thời thoả mãn \(f\left( 1 \right) = \frac{5}{2},\,\,g\left( 1 \right) = \frac{1}{2}\) và \(g\left( x \right) = - x \cdot f'\left( x \right),\,\,f\left( x \right) = - x \cdot g'\left( x \right)\,\,\forall x > 0.\) Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right),\,\,y = g\left( x \right)\) và hai đường thẳng \(x = 3,\,\,x = 5\) bằng
Cho hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) có đạo hàm liên tục trên khoảng \(\left( {0\,;\,\, + \infty } \right)\) đồng thời thoả mãn \(f\left( 1 \right) = \frac{5}{2},\,\,g\left( 1 \right) = \frac{1}{2}\) và \(g\left( x \right) = - x \cdot f'\left( x \right),\,\,f\left( x \right) = - x \cdot g'\left( x \right)\,\,\forall x > 0.\) Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right),\,\,y = g\left( x \right)\) và hai đường thẳng \(x = 3,\,\,x = 5\) bằng
Quảng cáo
Trả lời:
Ta có \(f\left( x \right) - g\left( x \right) = - x \cdot g'\left( x \right) + x \cdot f'\left( x \right) = x \cdot \left[ {f'\left( x \right) - g'\left( x \right)} \right]\)
Đặt \(h\left( x \right) = f\left( x \right) - g\left( x \right) \Rightarrow h'\left( x \right) = f'\left( x \right) - g'\left( x \right)\).
Do đó \(h\left( x \right) = x \cdot h'\left( x \right) \Leftrightarrow \frac{{h'\left( x \right)}}{{h\left( x \right)}} = \frac{1}{x} \Leftrightarrow \int {\frac{{h'\left( x \right)}}{{h\left( x \right)}}} {\rm{d}}x = \int {\frac{1}{x}} \;{\rm{d}}x\)
\( \Leftrightarrow \ln \left| {h\left( x \right)} \right| = \ln x + C\) mà \(h(1) = f(1) - g(1) = 2\) nên \(C = \ln 2.\)
Suy ra \(\ln \left| {h\left( x \right)} \right| = \ln x + \ln 2 \Leftrightarrow \ln \left| {h\left( x \right)} \right| = \ln \left( {2x} \right) \Leftrightarrow \left| {h\left( x \right)} \right| = 2x\).
Vậy diện tích cần tính là \(S = \int\limits_3^5 {\left| {f\left( x \right) - g\left( x \right)} \right|} \,{\rm{d}}x = \int\limits_3^5 {\left| {h\left( x \right)} \right|} \,{\rm{d}}x = \int\limits_3^5 {2x} \,{\rm{d}}x = 16.\)
Đáp án: 16.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giả sử Học sinh chơi bóng đá".
Học sinh chơi bóng chuyền".
\(A \cup B = \)"Học sinh chơi bóng đá hoặc bóng chuyền".
\(A \cap B = \)"Học sinh chơi cả hai môn".
Số phần tử của \(A \cup B\) là: \(25 + 20 - 10 = 35.\)
Số học sinh chơi bóng đá hoặc bóng chuyền là số học sinh của lớp là 35.
Đáp án: 35.
Lời giải
Ta có: \( - 1 \le \cos \left( {\frac{\pi }{{10}}t} \right) \le 1 \Leftrightarrow - 90 \le 90\cos \left( {\frac{\pi }{{10}}t} \right) \le 90 \Leftrightarrow - 90 \le h\left( t \right) \le 90.\)
Chiều cao của sóng (khoảng cách theo phương thẳng đứng giữa đáy và đỉnh của sóng) là:
\(90 - \left( { - 90} \right) = 180\,\,\left( {cm} \right).\) Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.