Câu hỏi:

13/07/2024 307 Lưu

Cho hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) có đạo hàm liên tục trên khoảng \(\left( {0\,;\,\, + \infty } \right)\) đồng thời thoả mãn \(f\left( 1 \right) = \frac{5}{2},\,\,g\left( 1 \right) = \frac{1}{2}\) và \(g\left( x \right) =  - x \cdot f'\left( x \right),\,\,f\left( x \right) =  - x \cdot g'\left( x \right)\,\,\forall x > 0.\) Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right),\,\,y = g\left( x \right)\) và hai đường thẳng \(x = 3,\,\,x = 5\) bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \(f\left( x \right) - g\left( x \right) =  - x \cdot g'\left( x \right) + x \cdot f'\left( x \right) = x \cdot \left[ {f'\left( x \right) - g'\left( x \right)} \right]\)

Đặt \(h\left( x \right) = f\left( x \right) - g\left( x \right) \Rightarrow h'\left( x \right) = f'\left( x \right) - g'\left( x \right)\).

Do đó \(h\left( x \right) = x \cdot h'\left( x \right) \Leftrightarrow \frac{{h'\left( x \right)}}{{h\left( x \right)}} = \frac{1}{x} \Leftrightarrow \int {\frac{{h'\left( x \right)}}{{h\left( x \right)}}} {\rm{d}}x = \int {\frac{1}{x}} \;{\rm{d}}x\)

\( \Leftrightarrow \ln \left| {h\left( x \right)} \right| = \ln x + C\) mà \(h(1) = f(1) - g(1) = 2\) nên \(C = \ln 2.\)

Suy ra \(\ln \left| {h\left( x \right)} \right| = \ln x + \ln 2 \Leftrightarrow \ln \left| {h\left( x \right)} \right| = \ln \left( {2x} \right) \Leftrightarrow \left| {h\left( x \right)} \right| = 2x\).

Vậy diện tích cần tính là \(S = \int\limits_3^5 {\left| {f\left( x \right) - g\left( x \right)} \right|} \,{\rm{d}}x = \int\limits_3^5 {\left| {h\left( x \right)} \right|} \,{\rm{d}}x = \int\limits_3^5 {2x} \,{\rm{d}}x = 16.\)

Đáp án: 16.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giả sử Học sinh chơi bóng đá".

Học sinh chơi bóng chuyền".

\(A \cup B = \)"Học sinh chơi bóng đá hoặc bóng chuyền".

\(A \cap B = \)"Học sinh chơi cả hai môn".

Số phần tử của \(A \cup B\) là: \(25 + 20 - 10 = 35.\)

Số học sinh chơi bóng đá hoặc bóng chuyền là số học sinh của lớp là 35.

Đáp án: 35.

Lời giải

Ta có: \( - 1 \le \cos \left( {\frac{\pi }{{10}}t} \right) \le 1 \Leftrightarrow  - 90 \le 90\cos \left( {\frac{\pi }{{10}}t} \right) \le 90 \Leftrightarrow  - 90 \le h\left( t \right) \le 90.\)

Chiều cao của sóng (khoảng cách theo phương thẳng đứng giữa đáy và đỉnh của sóng) là:

\(90 - \left( { - 90} \right) = 180\,\,\left( {cm} \right).\)  Chọn D.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP