Câu hỏi:
13/07/2024 201
Cho các số thực \[b,\,\,c\] sao cho phương trình \({z^2} + bz + c = 0\) có hai nghiệm phức \({z_1},\,\,{z_2}\) thỏa mãn \(\left| {{z_1} - 4 + 3i} \right| = 1\) và \(\left| {{z_2} - 8 - 6i} \right| = 4.\) Tính \(5b + c.\)
Cho các số thực \[b,\,\,c\] sao cho phương trình \({z^2} + bz + c = 0\) có hai nghiệm phức \({z_1},\,\,{z_2}\) thỏa mãn \(\left| {{z_1} - 4 + 3i} \right| = 1\) và \(\left| {{z_2} - 8 - 6i} \right| = 4.\) Tính \(5b + c.\)
Quảng cáo
Trả lời:
Xét phương trình \({z^2} + bz + c = 0\) có hai nghiệm phức với \({z_1} = x + yi\) và \({z_2} = x - yi.\)
• Xét \(\left| {{z_1} - 4 + 3i} \right| = 1 \Leftrightarrow \left| {\left( {x - 4} \right) + \left( {y + 3} \right)i} \right| = 1 \Leftrightarrow {\left( {x - 4} \right)^2} + {\left( {y + 3} \right)^2} = 1\) (1).
• Xét \(\left| {{z_2} - 8 - 6i} \right| = 4 \Leftrightarrow \left| {\left( {x - 8} \right) + \left( { - y - 6} \right)i} \right| = 4 \Rightarrow {\left( {x - 8} \right)^2}{\left( {y + 6} \right)^2} = 16\) (2).
Lập hệ với (1) và (2), ta được: \[\left\{ {\begin{array}{*{20}{l}}{{{\left( {x - 4} \right)}^2} + {{\left( {y + 3} \right)}^2} = 1}\\{{{\left( {x - 8} \right)}^2} + {{\left( {y + 6} \right)}^2} = 16}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = \frac{{24}}{5}}\\{y = \frac{{ - 18}}{5}}\end{array}} \right.} \right..\]
Suy ra: \({z_1} = \frac{{24}}{5} - \frac{{18}}{5}i\) và \({z_2} = \frac{{24}}{5} + \frac{{18}}{5}i.\)
Khi đó: \(\left\{ {\begin{array}{*{20}{l}}{{z_1} + {z_2} = - b = \frac{{48}}{5} \Rightarrow b = \frac{{ - 48}}{5}}\\{{z_1}.{z_2} = c = 36}\end{array} \Rightarrow 5b + c = - 12} \right..\)
Đáp án: −12.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giả sử Học sinh chơi bóng đá".
Học sinh chơi bóng chuyền".
\(A \cup B = \)"Học sinh chơi bóng đá hoặc bóng chuyền".
\(A \cap B = \)"Học sinh chơi cả hai môn".
Số phần tử của \(A \cup B\) là: \(25 + 20 - 10 = 35.\)
Số học sinh chơi bóng đá hoặc bóng chuyền là số học sinh của lớp là 35.
Đáp án: 35.
Lời giải
Ta có: \( - 1 \le \cos \left( {\frac{\pi }{{10}}t} \right) \le 1 \Leftrightarrow - 90 \le 90\cos \left( {\frac{\pi }{{10}}t} \right) \le 90 \Leftrightarrow - 90 \le h\left( t \right) \le 90.\)
Chiều cao của sóng (khoảng cách theo phương thẳng đứng giữa đáy và đỉnh của sóng) là:
\(90 - \left( { - 90} \right) = 180\,\,\left( {cm} \right).\) Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.