Câu hỏi:

11/07/2024 363

Một loại kẹo có hình dạng là khối cầu với bán kính đáy bằng \[1{\rm{ }}cm\] được đặt trong vỏ kẹo có hình dạng là hình chóp tứ giác đều (các mặt của vỏ tiếp xúc với kẹo). Biết rằng khối chóp đều tạo thành từ vỏ kẹo đó có thể tích bé nhất. Tổng diện tích tất cả các mặt xung quanh của vỏ kẹo bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Giả sử vỏ kẹo có hình dạng là hình chóp tứ giác đều \[S.ABCD\] có đáy \[ABCD\] là hình vuông tâm \(O\), cạnh \[a,\] đường cao \(SO = h.\)

Loại kẹo có hình dạng là khối cầu có tâm \[I.\]

Gọi \(M\) là trung điểm của cạnh \[CD\]; \(K\) là hình chiếu của \(I\) trên \(SM\) nên \(K\) là hình chiếu của \(I\) trên \(\left( {SCD} \right).\) Suy ra \(OI = IK = 1.\)

Dễ thấy  suy ra \(\frac{{SI}}{{SM}} = \frac{{OK}}{{OM}} \Rightarrow \frac{{SO - OI}}{{\sqrt {S{O^2} + O{M^2}} }} = \frac{{IK}}{{OM}}.\)

Suy ra \(\frac{{h - 1}}{{\sqrt {{h^2} + \frac{{{a^2}}}{4}} }} = \frac{1}{{\frac{a}{2}}} \Leftrightarrow ah - a = \sqrt {4{h^2} + {a^2}}  \Leftrightarrow {(ah - a)^2} = 4{h^2} + {a^2}\)

\( \Leftrightarrow {a^2}{h^2} - 2{a^2}h + {a^2} = 4{h^2} + {a^2} \Leftrightarrow \left( {{a^2} - 4} \right){h^2} - 2{a^2}h = 0 \Rightarrow h = \frac{{2{a^2}}}{{{a^2} - 4}}.\)

Thể tích khối chóp \[S.ABCD\] là: \(V = \frac{1}{3}SO \cdot {S_{ABCD}} = \frac{1}{3} \cdot \frac{{2{a^2}}}{{{a^2} - 4}} \cdot {a^2} = \frac{2}{3} \cdot \frac{{{a^4}}}{{{a^2} - 4}}\)

Lại có \(\frac{{{a^4}}}{{{a^2} - 4}} = \frac{{{a^4} - 16 + 16}}{{{a^2} - 4}} = \frac{{\left( {{a^2} - 4} \right)\left( {{a^2} + 4} \right) + 16}}{{{a^2} - 4}} = {a^2} + 4 + \frac{{16}}{{{a^2} - 4}}\)

\( = \left( {{a^2} - 4 + \frac{{16}}{{{a^2} - 4}}} \right) + 8 \ge 2\sqrt {\left( {{a^2} - 4} \right) \cdot \frac{{16}}{{{a^2} - 4}}}  + 8 = 2 \cdot \sqrt {16}  + 8 = 16.{\rm{ }}\)

Suy ra \(V \ge \frac{2}{3} \cdot 16 = \frac{{32}}{3}.\) Dấu  xảy ra khi \(a = 2\sqrt 2  \Rightarrow h = 4 \Rightarrow OM = \sqrt 2 \,,\,\,SM = 3\sqrt 2 .\)

Vậy tổng diện tích tất cả các mặt xung quanh của vỏ kẹo là \(S = 4 \cdot {S_{SCD}} = 24\;\,\left( {{\rm{c}}{{\rm{m}}^2}} \right).\)

Đáp án: 24.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giả sử Học sinh chơi bóng đá".

Học sinh chơi bóng chuyền".

\(A \cup B = \)"Học sinh chơi bóng đá hoặc bóng chuyền".

\(A \cap B = \)"Học sinh chơi cả hai môn".

Số phần tử của \(A \cup B\) là: \(25 + 20 - 10 = 35.\)

Số học sinh chơi bóng đá hoặc bóng chuyền là số học sinh của lớp là 35.

Đáp án: 35.

Lời giải

Ta có: \( - 1 \le \cos \left( {\frac{\pi }{{10}}t} \right) \le 1 \Leftrightarrow  - 90 \le 90\cos \left( {\frac{\pi }{{10}}t} \right) \le 90 \Leftrightarrow  - 90 \le h\left( t \right) \le 90.\)

Chiều cao của sóng (khoảng cách theo phương thẳng đứng giữa đáy và đỉnh của sóng) là:

\(90 - \left( { - 90} \right) = 180\,\,\left( {cm} \right).\)  Chọn D.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP