Câu hỏi:

11/07/2024 84

Một loại kẹo có hình dạng là khối cầu với bán kính đáy bằng \[1{\rm{ }}cm\] được đặt trong vỏ kẹo có hình dạng là hình chóp tứ giác đều (các mặt của vỏ tiếp xúc với kẹo). Biết rằng khối chóp đều tạo thành từ vỏ kẹo đó có thể tích bé nhất. Tổng diện tích tất cả các mặt xung quanh của vỏ kẹo bằng

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Giả sử vỏ kẹo có hình dạng là hình chóp tứ giác đều \[S.ABCD\] có đáy \[ABCD\] là hình vuông tâm \(O\), cạnh \[a,\] đường cao \(SO = h.\)

Loại kẹo có hình dạng là khối cầu có tâm \[I.\]

Gọi \(M\) là trung điểm của cạnh \[CD\]; \(K\) là hình chiếu của \(I\) trên \(SM\) nên \(K\) là hình chiếu của \(I\) trên \(\left( {SCD} \right).\) Suy ra \(OI = IK = 1.\)

Dễ thấy  suy ra \(\frac{{SI}}{{SM}} = \frac{{OK}}{{OM}} \Rightarrow \frac{{SO - OI}}{{\sqrt {S{O^2} + O{M^2}} }} = \frac{{IK}}{{OM}}.\)

Suy ra \(\frac{{h - 1}}{{\sqrt {{h^2} + \frac{{{a^2}}}{4}} }} = \frac{1}{{\frac{a}{2}}} \Leftrightarrow ah - a = \sqrt {4{h^2} + {a^2}}  \Leftrightarrow {(ah - a)^2} = 4{h^2} + {a^2}\)

\( \Leftrightarrow {a^2}{h^2} - 2{a^2}h + {a^2} = 4{h^2} + {a^2} \Leftrightarrow \left( {{a^2} - 4} \right){h^2} - 2{a^2}h = 0 \Rightarrow h = \frac{{2{a^2}}}{{{a^2} - 4}}.\)

Thể tích khối chóp \[S.ABCD\] là: \(V = \frac{1}{3}SO \cdot {S_{ABCD}} = \frac{1}{3} \cdot \frac{{2{a^2}}}{{{a^2} - 4}} \cdot {a^2} = \frac{2}{3} \cdot \frac{{{a^4}}}{{{a^2} - 4}}\)

Lại có \(\frac{{{a^4}}}{{{a^2} - 4}} = \frac{{{a^4} - 16 + 16}}{{{a^2} - 4}} = \frac{{\left( {{a^2} - 4} \right)\left( {{a^2} + 4} \right) + 16}}{{{a^2} - 4}} = {a^2} + 4 + \frac{{16}}{{{a^2} - 4}}\)

\( = \left( {{a^2} - 4 + \frac{{16}}{{{a^2} - 4}}} \right) + 8 \ge 2\sqrt {\left( {{a^2} - 4} \right) \cdot \frac{{16}}{{{a^2} - 4}}}  + 8 = 2 \cdot \sqrt {16}  + 8 = 16.{\rm{ }}\)

Suy ra \(V \ge \frac{2}{3} \cdot 16 = \frac{{32}}{3}.\) Dấu  xảy ra khi \(a = 2\sqrt 2  \Rightarrow h = 4 \Rightarrow OM = \sqrt 2 \,,\,\,SM = 3\sqrt 2 .\)

Vậy tổng diện tích tất cả các mặt xung quanh của vỏ kẹo là \(S = 4 \cdot {S_{SCD}} = 24\;\,\left( {{\rm{c}}{{\rm{m}}^2}} \right).\)

Đáp án: 24.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Mỗi học sinh lớp 10B đều chơi bóng đá hoặc bóng chuyền. Biết rằng có 25 bạn chơi bóng đá, 20 bạn chơi bóng chuyền và 10 bạn chơi cả hai môn. Hỏi lớp 10B có bao nhiêu học sinh?

Xem đáp án » 13/07/2024 8,087

Câu 2:

Giả sử khi một cơn sóng biển đi qua một cái cọc ở ngoài khơi, chiều cao của nước được mô hình hóa bởi hàm số \(h\left( t \right) = 90\cos \left( {\frac{\pi }{{10}}t} \right)\), trong đó \[h\left( t \right)\] là độ cao tính bằng centimét trên mực nước biển trung bình tại thời điểm \(t\) giây. Chiều cao của sóng (tức là khoảng cách theo phương thẳng đứng giữa đáy và đỉnh của sóng) bằng

Xem đáp án » 24/06/2024 6,817

Câu 3:

Cho hàm số , với \(m\) là tham số. Gọi \({m_1},\,\,{m_2}\,\,\left( {{m_1} < {m_2}} \right)\) là các giá trị của tham số \(m\) thỏa mãn \(2{\max _{\left[ {0\,;\,\,2} \right]}}f\left( x \right) - {\min _{\left[ {0\,;\,\,2} \right]}}f\left( x \right) = 8.\) Tổng \(2{m_1} + 3{m_2}\) bằng

Xem đáp án » 24/06/2024 3,104

Câu 4:

Giám sát hệ thống tài chính toàn cầu là nhiệm vụ chủ yếu của

Xem đáp án » 23/07/2024 2,857

Câu 5:

Polymer nào sau đây trong thành phần hóa học chỉ có hai nguyên tố C và H? 

Xem đáp án » 23/07/2024 2,183

Câu 6:

Cho hai lực \(\overrightarrow {{F_1}}  = \overrightarrow {MA} \,,\,\,\overrightarrow {{F_2}}  = \overrightarrow {MB} \) cùng tác động vào một vật tại điểm \(M\) cường độ \(\overrightarrow {{F_1}} \,,\,\,\overrightarrow {{F_2}} \) lần lượt là \(300\;{\rm{N}}\) và \(400\;{\rm{N}}\,,\,\,\widehat {AMB} = 90^\circ .\) Cường độ của lực tổng hợp tác động vào vật là

Xem đáp án » 24/06/2024 1,727

Câu 7:

Gọi \(S\) là tập hợp các giá trị nguyên của tham số \(m\) để đồ thị hàm số \(y = \frac{{\sqrt {x + 2} }}{{\sqrt {{x^2} - 6x + 2m} }}\) có hai đường tiệm cận đứng. Số phần tử của \(S\) là

Xem đáp án » 13/07/2024 1,716

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store