Câu hỏi:
11/07/2024 38,135
Một nhóm 5 học sinh nam và 4 học sinh nữ tham gia lao động trên sân trường. Cô giáo chọn ngẫu nhiên đồng thời 2 bạn trong nhóm đi tưới cây. Tính xác suất để hai bạn được chọn có cùng giới tính, biết rằng có ít nhất 1 bạn nam được chọn.
Một nhóm 5 học sinh nam và 4 học sinh nữ tham gia lao động trên sân trường. Cô giáo chọn ngẫu nhiên đồng thời 2 bạn trong nhóm đi tưới cây. Tính xác suất để hai bạn được chọn có cùng giới tính, biết rằng có ít nhất 1 bạn nam được chọn.

Quảng cáo
Trả lời:
Gọi A là biến cố “Chọn hai bạn có cùng giới tính”.
B là biến cố “Chọn được ít nhất 1 bạn nam”.
AB là biến cố “Chọn được hai bạn có cùng giới tính trong đó có ít nhất 1 bạn nam” hay AB “Chọn được 2 bạn nam”.
Ta có \(P\left( {AB} \right) = \frac{{C_5^2}}{{C_9^2}} = \frac{5}{{18}}\).
\(P\left( B \right) = \frac{{C_5^1.C_4^1}}{{C_9^2}} + \frac{{C_5^2}}{{C_9^2}} = \frac{5}{9} + \frac{5}{{18}} = \frac{5}{6}\).
Do đó \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{5}{{18}}:\frac{5}{6} = \frac{1}{3}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Có \(P\left( {\overline B } \right) = 1 - P\left( B \right) = 0,2\).
Theo công thức nhân xác suất ta có: \(P\left( {A\overline B } \right) = P\left( {\overline B } \right).P\left( {A|\overline B } \right) = 0,2.0,5 = 0,1\).
Vì \(A\overline B \) và \(AB\) là hai biến cố xung khắc và \(A\overline B \cup AB = A\).
Suy ra \(P(AB) = P(A) - P\left( {A\overline B } \right) = 0,4 - 0,1 = 0,3\).
Do đó \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P(B)}} = \frac{{0,3}}{{0,8}} = \frac{3}{8}\) .
Lời giải
Gọi M là biến cố “Viên bi lấy ra từ hộp thứ nhất có màu xanh”,
N là biến cố “Viên bi lấy ra từ hộp thứ hai có màu đỏ”.
Ta có \(P(M) = \frac{4}{{10}} = \frac{2}{5} = 0,4\); \(P(N|M) = \frac{4}{{10}} = \frac{2}{5} = 0,4\);
Suy ra \(P\left( {\overline M } \right) = 1 - P\left( M \right) = 0,6\); \(P\left( {N|\overline M } \right) = \frac{5}{{10}} = 0,5\); \(P\left( {\overline N |M} \right) = \frac{6}{{10}} = 0,6\);
\(P\left( {\overline N |\overline M } \right) = \frac{5}{{10}} = 0,5\)
Ta có sơ đồ cây

Dựa vào sơ đồ cây ta có P(A) = 0,16; P(B) = 0,24 + 0,3 = 0,54.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.