Câu hỏi:

25/06/2024 5,135

Trên mặt phẳng tọa độ \[Oxy,\] cho điểm \(P\left( { - 3\,;\,\, - 2} \right)\) và đường tròn \(\left( C \right):{\left( {x - 3} \right)^2} + {\left( {y - 4} \right)^2} = 36.\) Từ điểm \(P\) kẻ các tiếp tuyến \[PM\] và \[PN\] tới đường tròn \(\left( C \right),\) với \[M,\,\,N\] là các tiếp điểm. Phương trình đường thẳng \[MN\] là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Đường tròn \(\left( C \right)\) có tâm \(I\left( {3\,;\,\,4} \right)\), bán kính \(R = IM = IN = 6\).

Ta có \(\overrightarrow {IP}  = \left( { - 6\,;\,\, - 6} \right) \Rightarrow IP = 6\sqrt 2 .\)

Xét tam giác \(OMP\) vuông tại \(M\) \((PM\) là tiếp tuyến của đường tròn \(\left( C \right)\) tại \(M)\)

\( \Rightarrow PM = \sqrt {I{P^2} - I{M^2}}  = \sqrt {72 - 36}  = 6.\)

Tương tự ta cũng có \(PN = 6\) nên \(PN = PM = IM = IN = 6.\)

Mà \(\widehat {IMP} = 90^\circ \) \((PM\) là tiếp tuyến của đường tròn \(\left( C \right)\) tại \(M)\)\( \Rightarrow IMPN\) là hình vuông.

\( \Rightarrow MN\) nhận \(\overrightarrow {IP}  = \left( { - 6\,;\,\, - 6} \right)\) là vectơ pháp tuyến và đi qua trung điểm \(H\left( {0\,;\,\,1} \right)\) của \(IP.\)

Do đó, phương trình \(MN: - 6\left( {x - 0} \right) - 6\left( {y - 1} \right) = 0 \Leftrightarrow x + y - 1 = 0\). Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trên giao tuyến \(\Delta \) của hai mặt phẳng \((P),\,\,(Q)\) ta lấy lần lượt 2 điểm \[A,\,\,B\] như sau:

• Lấy \(A\left( {x\,;\,\,y\,;\,\,1} \right) \in \Delta \), ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{x - y = 0}\\{x + 2y = 0}\end{array} \Rightarrow x = y = 0 \Rightarrow A\left( {0\,;\,\,0\,;\,\,1} \right)} \right..\)

• Lấy \(B\left( { - 1\,;\,\,y\,;\,\,z} \right) \in \Delta \), ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{y + z = 0}\\{2y + z = 2}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{y = 2}\\{z =  - 2}\end{array} \Rightarrow B\left( { - 1\,;\,\,2\,;\,\, - 2} \right)} \right.} \right..\)

Vì \(\Delta  \in (\alpha )\) nên \(A,\,\,B \in (\alpha ).\) Do đó, ta có: \(\left\{ {\begin{array}{*{20}{l}}{2 + b = 0}\\{ - a + b - 6 = 0}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a =  - 8}\\{b =  - 2}\end{array}} \right.} \right..\)

Vậy \(a + 4b =  - 8 + 4 \cdot \left( { - 2} \right) =  - 16.\) Chọn A.

Câu 2

Lời giải

Yêu cầu bài toán \( \Leftrightarrow f'\left( x \right) = 4m \cdot {x^3} + 16\left( {m - 6} \right)x \le 0\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)

\( \Leftrightarrow 4x\left[ {m{x^2} + 4\left( {m - 6} \right)} \right] \le 0\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)

\( \Leftrightarrow m{x^2} + 4m - 24 \le 0 \Leftrightarrow m\left( {{x^2} + 4} \right) \le 24 \Leftrightarrow m \le \frac{{24}}{{{x^2} + 4}}\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)

\( \Leftrightarrow m \le {\min _{\left[ {1\,;\,\,2} \right]}}\left( {\frac{{24}}{{{x^2} + 4}}} \right) = 3\).

Mà \(m \in \left( { - 10\,;\,\,10} \right)\) suy ra có tất cả \(3 - \left( { - 9} \right) + 1 = 13\) giá trị nguyên của \(m\) cần tìm.

Chọn D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP