Câu hỏi:

11/07/2024 5,123

Lớp 12D có 45 học sinh, trong đó có 25 em thích môn Văn, 20 em thích môn Toán, 18 em thích môn Tiếng Anh, 6 em không thích môn nào, 5 em thích cả ba môn. Hỏi số em thích chỉ một môn trong ba môn trên là bao nhiêu?

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Trong lớp 10A, gọi T là tập hợp những em thích môn Toán; V là tập hợp những em thích môn Văn; A là tập hợp những em thích môn Tiếng Anh; K là tập hợp những em không thích môn nào.

Gọi \[a,\,\,b,\,\,c\] theo thứ tự là số học sinh chỉ thích môn Văn, Toán, Tiếng Anh;

\(x\) là số học sinh chỉ thích hai môn Văn và Toán;

\(y\) là số học sinh chỉ thích hai môn Văn và Tiếng Anh;

\(z\) là số học sinh chỉ thích hai môn Toán và Tiếng Anh.

Ta có biểu đồ Ven:

Media VietJack

Từ biểu đồ Ven ta có hệ phương trình sau: \(\left\{ {\begin{array}{*{20}{l}}{a + x + y + 5 = 25 & (1)}\\{b + x + z + 5 = 20 & (2)}\\{c + y + z + 5 = 18 & (3)}\\{x + y + z + a + b + c + 5 + 6 = 45}\end{array}} \right.\)

Cộng vế với vế của \((1),\,\,(2),\,\,(3)\) ta có: \(a + b + c + 2\left( {x + y + z} \right) + 15 = 63\)

\( \Leftrightarrow a + b + c + 2\left( {x + y + z} \right) = 48\) (5)

Từ (4) và (5) ta có \(\left\{ {\begin{array}{*{20}{l}}{x + y + z + a + b + c = 34}\\{a + b + c + 2\left( {x + y + z} \right) = 48}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{2\left( {x + y + z} \right) + 2\left( {a + b + c} \right) = 68}\\{a + b + c + 2\left( {x + y + z} \right) = 48}\end{array}} \right.} \right.\)

Do đó \(a + b + c = 20.{\rm{ }}\)

Đáp án: 20.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian \[Oxyz,\] cho mặt phẳng \((\alpha ):ax - y + 2z + b = 0\) đi qua giao tuyến của hai mặt phẳng \((P):x - y - z + 1 = 0\) và \((Q):x + 2y + z - 1 = 0.\) Giá trị của \(a + 4b\) bằng

Xem đáp án » 25/06/2024 12,328

Câu 2:

Tập hợp tất cả các giá trị thực của tham số \(m\) để hàm số \(y = {x^3} - 3{x^2} + \left( {5 - m} \right)x\) đồng biến trên khoảng \(\left( {2\,;\,\, + \infty } \right)\) là

Xem đáp án » 25/06/2024 9,555

Câu 3:

Biết \(M\left( {1\,;\,\, - 5} \right)\) là một điểm cực trị của hàm số \(y = f\left( x \right) = a{x^3} + 4{x^2} + bx + 1.\) Giá trị \(f\left( 2 \right)\) bằng

Xem đáp án » 25/06/2024 8,041

Câu 4:

Cho các số thực dương \(x \ne 1\,,\,\,y \ne 1\) thỏa mãn \({\log _2}x = {\log _y}16\) và tích \(xy = 64.\) Giá trị của biểu thức \({\left( {{{\log }_2}\frac{x}{y}} \right)^2}\) là

Xem đáp án » 25/06/2024 6,235

Câu 5:

Gọi \(g\left( x \right)\) là một nguyên hàm của hàm số \[f\left( x \right) = \ln \left( {x - 1} \right).\] Cho biết \(g\left( 2 \right) = 1\) và \(g\left( 3 \right) = a\ln b\) trong đó \[a,\,\,b\] là các số nguyên dương phân biệt. Giá trị của \(T = 3{a^2} - {b^2}\) là

Xem đáp án » 25/06/2024 6,037

Câu 6:

Trong vật lí, sự phân rã của các chất phóng xạ được biểu diễn bởi công thức \(m\left( t \right) = {m_0} \cdot {\left( {\frac{1}{2}} \right)^{\frac{t}{T}}}\), trong đó \({m_0}\) là khối lượng ban đầu của chất phóng xạ (tại thời điểm \(t = 0),\) \(T\) là chu kì bán rã (tức là khoảng thời gian để một nửa khối lượng chất phóng xạ bị biến thành chất khác). Chu kì bán rã của Cacbon \(^{14}C\) là khoảng \[5\,\,730\] năm. Người ta tìm được trong một mẫu đồ cổ một lượng Cacbon và xác định được nó đã mất khoảng \[25\% \] lượng Cacbon ban đầu của nó. Hỏi mẫu đồ cổ đó có tuổi là bao nhiêu?

Xem đáp án » 25/06/2024 2,744