Câu hỏi:
11/07/2024 5,520Lớp 12D có 45 học sinh, trong đó có 25 em thích môn Văn, 20 em thích môn Toán, 18 em thích môn Tiếng Anh, 6 em không thích môn nào, 5 em thích cả ba môn. Hỏi số em thích chỉ một môn trong ba môn trên là bao nhiêu?
Quảng cáo
Trả lời:
Trong lớp 10A, gọi T là tập hợp những em thích môn Toán; V là tập hợp những em thích môn Văn; A là tập hợp những em thích môn Tiếng Anh; K là tập hợp những em không thích môn nào.
Gọi \[a,\,\,b,\,\,c\] theo thứ tự là số học sinh chỉ thích môn Văn, Toán, Tiếng Anh;
\(x\) là số học sinh chỉ thích hai môn Văn và Toán;
\(y\) là số học sinh chỉ thích hai môn Văn và Tiếng Anh;
\(z\) là số học sinh chỉ thích hai môn Toán và Tiếng Anh.
Ta có biểu đồ Ven:
Từ biểu đồ Ven ta có hệ phương trình sau: \(\left\{ {\begin{array}{*{20}{l}}{a + x + y + 5 = 25 & (1)}\\{b + x + z + 5 = 20 & (2)}\\{c + y + z + 5 = 18 & (3)}\\{x + y + z + a + b + c + 5 + 6 = 45}\end{array}} \right.\)
Cộng vế với vế của \((1),\,\,(2),\,\,(3)\) ta có: \(a + b + c + 2\left( {x + y + z} \right) + 15 = 63\)
\( \Leftrightarrow a + b + c + 2\left( {x + y + z} \right) = 48\) (5)
Từ (4) và (5) ta có \(\left\{ {\begin{array}{*{20}{l}}{x + y + z + a + b + c = 34}\\{a + b + c + 2\left( {x + y + z} \right) = 48}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{2\left( {x + y + z} \right) + 2\left( {a + b + c} \right) = 68}\\{a + b + c + 2\left( {x + y + z} \right) = 48}\end{array}} \right.} \right.\)
Do đó \(a + b + c = 20.{\rm{ }}\)
Đáp án: 20.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trên giao tuyến \(\Delta \) của hai mặt phẳng \((P),\,\,(Q)\) ta lấy lần lượt 2 điểm \[A,\,\,B\] như sau:
• Lấy \(A\left( {x\,;\,\,y\,;\,\,1} \right) \in \Delta \), ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{x - y = 0}\\{x + 2y = 0}\end{array} \Rightarrow x = y = 0 \Rightarrow A\left( {0\,;\,\,0\,;\,\,1} \right)} \right..\)
• Lấy \(B\left( { - 1\,;\,\,y\,;\,\,z} \right) \in \Delta \), ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{y + z = 0}\\{2y + z = 2}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{y = 2}\\{z = - 2}\end{array} \Rightarrow B\left( { - 1\,;\,\,2\,;\,\, - 2} \right)} \right.} \right..\)
Vì \(\Delta \in (\alpha )\) nên \(A,\,\,B \in (\alpha ).\) Do đó, ta có: \(\left\{ {\begin{array}{*{20}{l}}{2 + b = 0}\\{ - a + b - 6 = 0}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a = - 8}\\{b = - 2}\end{array}} \right.} \right..\)
Vậy \(a + 4b = - 8 + 4 \cdot \left( { - 2} \right) = - 16.\) Chọn A.
Lời giải
Yêu cầu bài toán \( \Leftrightarrow f'\left( x \right) = 4m \cdot {x^3} + 16\left( {m - 6} \right)x \le 0\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)
\( \Leftrightarrow 4x\left[ {m{x^2} + 4\left( {m - 6} \right)} \right] \le 0\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)
\( \Leftrightarrow m{x^2} + 4m - 24 \le 0 \Leftrightarrow m\left( {{x^2} + 4} \right) \le 24 \Leftrightarrow m \le \frac{{24}}{{{x^2} + 4}}\,;\,\,\forall x \in \left( {1\,;\,\,2} \right)\)
\( \Leftrightarrow m \le {\min _{\left[ {1\,;\,\,2} \right]}}\left( {\frac{{24}}{{{x^2} + 4}}} \right) = 3\).
Mà \(m \in \left( { - 10\,;\,\,10} \right)\) suy ra có tất cả \(3 - \left( { - 9} \right) + 1 = 13\) giá trị nguyên của \(m\) cần tìm.
Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)
Top 10 đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2023 - 2024 có đáp án (Đề 7)