Câu hỏi:
11/07/2024 5,283Lớp 12D có 45 học sinh, trong đó có 25 em thích môn Văn, 20 em thích môn Toán, 18 em thích môn Tiếng Anh, 6 em không thích môn nào, 5 em thích cả ba môn. Hỏi số em thích chỉ một môn trong ba môn trên là bao nhiêu?
Quảng cáo
Trả lời:
Trong lớp 10A, gọi T là tập hợp những em thích môn Toán; V là tập hợp những em thích môn Văn; A là tập hợp những em thích môn Tiếng Anh; K là tập hợp những em không thích môn nào.
Gọi \[a,\,\,b,\,\,c\] theo thứ tự là số học sinh chỉ thích môn Văn, Toán, Tiếng Anh;
\(x\) là số học sinh chỉ thích hai môn Văn và Toán;
\(y\) là số học sinh chỉ thích hai môn Văn và Tiếng Anh;
\(z\) là số học sinh chỉ thích hai môn Toán và Tiếng Anh.
Ta có biểu đồ Ven:
Từ biểu đồ Ven ta có hệ phương trình sau: \(\left\{ {\begin{array}{*{20}{l}}{a + x + y + 5 = 25 & (1)}\\{b + x + z + 5 = 20 & (2)}\\{c + y + z + 5 = 18 & (3)}\\{x + y + z + a + b + c + 5 + 6 = 45}\end{array}} \right.\)
Cộng vế với vế của \((1),\,\,(2),\,\,(3)\) ta có: \(a + b + c + 2\left( {x + y + z} \right) + 15 = 63\)
\( \Leftrightarrow a + b + c + 2\left( {x + y + z} \right) = 48\) (5)
Từ (4) và (5) ta có \(\left\{ {\begin{array}{*{20}{l}}{x + y + z + a + b + c = 34}\\{a + b + c + 2\left( {x + y + z} \right) = 48}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{2\left( {x + y + z} \right) + 2\left( {a + b + c} \right) = 68}\\{a + b + c + 2\left( {x + y + z} \right) = 48}\end{array}} \right.} \right.\)
Do đó \(a + b + c = 20.{\rm{ }}\)
Đáp án: 20.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian \[Oxyz,\] cho mặt phẳng \((\alpha ):ax - y + 2z + b = 0\) đi qua giao tuyến của hai mặt phẳng \((P):x - y - z + 1 = 0\) và \((Q):x + 2y + z - 1 = 0.\) Giá trị của \(a + 4b\) bằng
Câu 2:
Tập hợp tất cả các giá trị thực của tham số \(m\) để hàm số \(y = {x^3} - 3{x^2} + \left( {5 - m} \right)x\) đồng biến trên khoảng \(\left( {2\,;\,\, + \infty } \right)\) là
Câu 3:
Biết \(M\left( {1\,;\,\, - 5} \right)\) là một điểm cực trị của hàm số \(y = f\left( x \right) = a{x^3} + 4{x^2} + bx + 1.\) Giá trị \(f\left( 2 \right)\) bằng
Câu 4:
Gọi \(g\left( x \right)\) là một nguyên hàm của hàm số \[f\left( x \right) = \ln \left( {x - 1} \right).\] Cho biết \(g\left( 2 \right) = 1\) và \(g\left( 3 \right) = a\ln b\) trong đó \[a,\,\,b\] là các số nguyên dương phân biệt. Giá trị của \(T = 3{a^2} - {b^2}\) là
Câu 5:
Cho các số thực dương \(x \ne 1\,,\,\,y \ne 1\) thỏa mãn \({\log _2}x = {\log _y}16\) và tích \(xy = 64.\) Giá trị của biểu thức \({\left( {{{\log }_2}\frac{x}{y}} \right)^2}\) là
Câu 6:
Trên mặt phẳng tọa độ \[Oxy,\] cho điểm \(P\left( { - 3\,;\,\, - 2} \right)\) và đường tròn \(\left( C \right):{\left( {x - 3} \right)^2} + {\left( {y - 4} \right)^2} = 36.\) Từ điểm \(P\) kẻ các tiếp tuyến \[PM\] và \[PN\] tới đường tròn \(\left( C \right),\) với \[M,\,\,N\] là các tiếp điểm. Phương trình đường thẳng \[MN\] là
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 13)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận