Câu hỏi:
25/06/2024 17,632Trong không gian với hệ trục tọa độ \[Oxyz,\] điểm \(M\left( {a\,;\,\,b\,;\,\,c} \right)\) thuộc mặt phẳng \((P):x + y + z - 6 = 0\) và cách đều các điểm \(A\left( {1\,;\,\,6\,;\,\,0} \right),\,\,B\left( { - 2\,;\,\,2\,;\,\, - 1} \right),\,\,C\left( {5\,;\,\, - 1\,;\,\,3} \right).\) Tích \[abc\] bằng
Quảng cáo
Trả lời:
Ta có\(\left\{ {\begin{array}{*{20}{l}}{a + b + c = 6}\\{M{A^2} = M{B^2}}\\{M{A^2} = M{C^2}}\end{array}} \right.\)\[ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a + b + c = 6}\\{{{\left( {a - 1} \right)}^2} + {{\left( {b - 6} \right)}^2} + {b^2} = {{\left( {a + 2} \right)}^2} + {{\left( {b - 2} \right)}^2} + {{\left( {c + 1} \right)}^2}}\\{{{\left( {a - 1} \right)}^2} + {{\left( {b - 6} \right)}^2} + {c^2} = {{(a - 5)}^2} + {{\left( {b + 1} \right)}^2} + {{\left( {c - 3} \right)}^2}}\end{array}} \right.\]
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a + b + c = 6}\\{3a + 4b + c = 14}\\{4a - 7b + 3b = - 1}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 1}\\{b = 2}\\{c = 3}\end{array} \Rightarrow abc = 6} \right.} \right.\).
Đáp án: 6.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Huyết áp giảm nhiều nhất thì hàm số \(G\left( x \right)\) đạt giá trị nhỏ nhất.
Xét hàm số \(h\left( x \right) = {x^2}\left( {15 - x} \right)\) trên \[\left( {0\,;\,\,15} \right)\], có \[h'\left( x \right) = 30x - 3{x^2} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 10}\end{array}} \right.\].
Dựa vào BBT của \(h\left( x \right)\), ta thấy \(h\left( x \right)\) đạt giá trị nhỏ nhất khi \(x = 10.\) Chọn D.
Lời giải
Chọn hệ trục toạ độ \[Oxyz\] sao cho \(O \equiv A\), tia \(Ox \equiv AD\), tia \(Oy \equiv AB.\)
Khi đó, \[A\left( {0\,;\,\,0\,;\,\,0} \right)\,;\,\,B\left( {0\,;\,\,2\,\,500\,;\,\,0} \right)\,;\,\]\[\,C\left( {1\,\,800\,;\,\,2500\,;\,\,0} \right)\,;\]\[D\left( {1500\,\,;\,\,0\,;\,\,0} \right).\]
Khi hạ độ cao các điểm ở các điểm xuống \[B,\,\,C,\,\,D\] thấp hơn so với độ cao ở \(A\) là \[10\,\,{\rm{cm}},\,\,a\,\,{\rm{cm}},\,\,6\,\,{\rm{cm}}\] tương ứng ta có các điểm mới \[B'\left( {0\,;\,\,2\,\,500\,;\,\, - 10} \right)\,;\,\,C'\left( {1800\,;\,\,2500\,;\,\, - a} \right)\,;\,\,\]\[D'\left( {1500\,;\,\,0\,;\,\, - 6} \right).\]Theo bài ra có \(A,\,\,B',\,\,C',\,\,D'\) đồng phẳng.
Phương trình mặt phẳng \(\left( {AB'D'} \right):x + y + 250z = 0.\)
Do \[C'\left( {1\,\,800\,;\,\,2500\,;\,\, - a} \right) \in \left( {AB'D'} \right)\] nên có \(1800 + 2500 - 250a = 0 \Rightarrow a = 17,2.\)
Vậy \(a = 17,2\;\,{\rm{cm}}.\)Chọn B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)