Câu hỏi:
25/06/2024 11,471Sinh nhật bạn của An vào ngày 01 tháng năm. An muốn mua một món quà sinh nhật cho bạn nên quyết định bỏ ống heo 100 đồng vào ngày 01 tháng 01 năm 2016, sau đó cứ liên tục ngày sau hơn ngày trước 100 đồng. Hỏi đến ngày sinh nhật của bạn, An đã tích lũy được bao nhiêu tiền? (thời gian bỏ ống heo tính từ ngày 01 tháng 01 năm 2016 đến ngày 30 tháng 4 năm 2016).
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
Số ngày bạn An để dành tiền (thời gian bỏ ống heo tính từ ngày 01 tháng 01 năm 2016 đến ngày 30 tháng 4 năm 2016) là \(31 + 29 + 31 + 30 = 121\) (ngày)
Số tiền bỏ ống heo ngày đầu tiên là \({u_1} = 100.\)
Số tiền bỏ ống heo ngày thứ hai là \({u_2} = 100 + 1.100.\)
Số tiền bỏ ống heo ngày thứ ba là \({u_3} = 100 + 2.100.\)
Số tiền bỏ ống heo ngày thứ \(n\) là \({u_n} = {u_1} + \left( {n - 1} \right)d = 100 + \left( {n - 1} \right) \cdot 100 = 100n\)
Số tiền bỏ ống heo ngày thứ 121 là \({u_{121}} = 100 \cdot 121 = 12\,\,100\).
Sau 121 ngày thì số tiền An tích luỹ được là tổng của 121 số hạng đầu của cấp số cộng có số hạng đầu \({u_1} = 100\,;\,\,d = 100.\)
Vậy số tiền An tích luỹ được là:
\({S_{121}} = \frac{{121}}{2}\left( {{u_1} + {u_{121}}} \right) = \frac{{121}}{2}\left( {100 + 12\,\,100} \right) = 738\,\,100\) (đồng). Chọn A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Độ giảm huyết áp của một bệnh nhân được cho bởi công thức \(G\left( x \right) = 0,035{x^2}\left( {15 - x} \right),\)trong đó \[x\] là liều lượng thuốc được tiêm cho bệnh nhân (x được tính bằng miligam). Liều lượng thuốc cần tiêm (đơn vị miligam) cho bệnh nhân để huyết áp giảm nhiều nhất là
Câu 2:
Tìm số nghiệm nguyên dương \(\left( {x\,;\,\,y} \right)\) của bất phương trình \(\frac{x}{3} + \frac{y}{4} \le 1\)?
Câu 3:
Một chiếc đu quay có bán kính \[75{\rm{ }}m,\] tâm của vòng quay ở độ cao \[90{\rm{ }}m\] (tham khảo hình vẽ). Thời gian quay hết 1 vòng của đu quay là 30 phút. Nếu một người vào cabin tại vị trí thấp nhất của vòng quay thì sau 20 phút quay, người đó ở độ cao bao nhiêu mét?
Câu 4:
Trong không gian với hệ trục tọa độ \[Oxyz,\] điểm \(M\left( {a\,;\,\,b\,;\,\,c} \right)\) thuộc mặt phẳng \((P):x + y + z - 6 = 0\) và cách đều các điểm \(A\left( {1\,;\,\,6\,;\,\,0} \right),\,\,B\left( { - 2\,;\,\,2\,;\,\, - 1} \right),\,\,C\left( {5\,;\,\, - 1\,;\,\,3} \right).\) Tích \[abc\] bằng
Câu 5:
Câu 6:
Một phần sân trường được định vị bởi các điểm \[A,\,\,B,\,\,C,\,\,D\] như hình vẽ.
Bước đầu chúng được lấy "thăng bằng" đế có cùng độ cao, biết \[ABCD\] là hình thang vuông ở \(A\) và \(B\) với độ dài \(AB = 25\,\,m,\,\,AD = 15\,\,m,\,\,BC = 18\,\,{\rm{m}}.\) Do yêu cầu kĩ thuật, khi lát phẳng phần sân trường phải thoát nước về góc sân ở \(C\) nên người ta lấy độ cao ở các điểm \[B,\,\,C,\,\,D\] xuống thấp hơn so với độ cao ở \(A\) là \[10\,\,{\rm{cm}},\,\,a\,\,{\rm{cm}},\,\,6\,\,{\rm{cm}}\] tương ứng. Giá trị của \(a\) là số nào sau đây?
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Top 5 đề thi Đánh giá năng lực trường ĐHQG Hà Nội có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 5)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
về câu hỏi!