Câu hỏi:
25/06/2024 13,357Sinh nhật bạn của An vào ngày 01 tháng năm. An muốn mua một món quà sinh nhật cho bạn nên quyết định bỏ ống heo 100 đồng vào ngày 01 tháng 01 năm 2016, sau đó cứ liên tục ngày sau hơn ngày trước 100 đồng. Hỏi đến ngày sinh nhật của bạn, An đã tích lũy được bao nhiêu tiền? (thời gian bỏ ống heo tính từ ngày 01 tháng 01 năm 2016 đến ngày 30 tháng 4 năm 2016).
Quảng cáo
Trả lời:
Số ngày bạn An để dành tiền (thời gian bỏ ống heo tính từ ngày 01 tháng 01 năm 2016 đến ngày 30 tháng 4 năm 2016) là \(31 + 29 + 31 + 30 = 121\) (ngày)
Số tiền bỏ ống heo ngày đầu tiên là \({u_1} = 100.\)
Số tiền bỏ ống heo ngày thứ hai là \({u_2} = 100 + 1.100.\)
Số tiền bỏ ống heo ngày thứ ba là \({u_3} = 100 + 2.100.\)
Số tiền bỏ ống heo ngày thứ \(n\) là \({u_n} = {u_1} + \left( {n - 1} \right)d = 100 + \left( {n - 1} \right) \cdot 100 = 100n\)
Số tiền bỏ ống heo ngày thứ 121 là \({u_{121}} = 100 \cdot 121 = 12\,\,100\).
Sau 121 ngày thì số tiền An tích luỹ được là tổng của 121 số hạng đầu của cấp số cộng có số hạng đầu \({u_1} = 100\,;\,\,d = 100.\)
Vậy số tiền An tích luỹ được là:
\({S_{121}} = \frac{{121}}{2}\left( {{u_1} + {u_{121}}} \right) = \frac{{121}}{2}\left( {100 + 12\,\,100} \right) = 738\,\,100\) (đồng). Chọn A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Huyết áp giảm nhiều nhất thì hàm số \(G\left( x \right)\) đạt giá trị nhỏ nhất.
Xét hàm số \(h\left( x \right) = {x^2}\left( {15 - x} \right)\) trên \[\left( {0\,;\,\,15} \right)\], có \[h'\left( x \right) = 30x - 3{x^2} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 10}\end{array}} \right.\].
Dựa vào BBT của \(h\left( x \right)\), ta thấy \(h\left( x \right)\) đạt giá trị nhỏ nhất khi \(x = 10.\) Chọn D.
Lời giải
Ta có\(\left\{ {\begin{array}{*{20}{l}}{a + b + c = 6}\\{M{A^2} = M{B^2}}\\{M{A^2} = M{C^2}}\end{array}} \right.\)\[ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a + b + c = 6}\\{{{\left( {a - 1} \right)}^2} + {{\left( {b - 6} \right)}^2} + {b^2} = {{\left( {a + 2} \right)}^2} + {{\left( {b - 2} \right)}^2} + {{\left( {c + 1} \right)}^2}}\\{{{\left( {a - 1} \right)}^2} + {{\left( {b - 6} \right)}^2} + {c^2} = {{(a - 5)}^2} + {{\left( {b + 1} \right)}^2} + {{\left( {c - 3} \right)}^2}}\end{array}} \right.\]
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a + b + c = 6}\\{3a + 4b + c = 14}\\{4a - 7b + 3b = - 1}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 1}\\{b = 2}\\{c = 3}\end{array} \Rightarrow abc = 6} \right.} \right.\).
Đáp án: 6.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)