Câu hỏi:

25/06/2024 7,674

Tìm số nghiệm nguyên dương \(\left( {x\,;\,\,y} \right)\) của bất phương trình \(\frac{x}{3} + \frac{y}{4} \le 1\)?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Do \(x > 0\,;\,\,\frac{x}{3} + \frac{y}{4} \le 1\) nên ta có \(\frac{y}{4} < 1 \Leftrightarrow y < 4\)

Do \(y\) nguyên dương nên \(y \in \left\{ {1\,;\,\,2\,;\,\,3} \right\}\).

• Với \(y = 1\) ta có \[0 < \frac{x}{3} \le \frac{3}{4} \Leftrightarrow 0 < x \le \frac{9}{4} \Leftrightarrow x \in \left\{ {1\,;\,\,2} \right\}\].

• Với \(y = 2\) ta có \(0 < \frac{x}{3} \le \frac{1}{2} \Leftrightarrow 0 < x \le \frac{3}{2} \Leftrightarrow x = 1\).

Với \(y = 3\) ta có \(0 < \frac{x}{3} \le \frac{1}{4} \Leftrightarrow 0 < x \le \frac{3}{4} \Leftrightarrow x \in \emptyset \).

Vậy bất phương trình có các nghiệm nguyên dương là \[\left( {1\,;\,\,1} \right),\,\,\left( {2\,;\,\,1} \right),\,\,\left( {1\,;\,\,2} \right).\] Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Huyết áp giảm nhiều nhất thì hàm số \(G\left( x \right)\) đạt giá trị nhỏ nhất.

Xét hàm số \(h\left( x \right) = {x^2}\left( {15 - x} \right)\) trên \[\left( {0\,;\,\,15} \right)\], có \[h'\left( x \right) = 30x - 3{x^2} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 10}\end{array}} \right.\].

Dựa vào BBT của \(h\left( x \right)\), ta thấy \(h\left( x \right)\) đạt giá trị nhỏ nhất khi \(x = 10.\) Chọn D.

Lời giải

Media VietJack

Chọn hệ trục toạ độ \[Oxyz\] sao cho \(O \equiv A\), tia \(Ox \equiv AD\), tia \(Oy \equiv AB.\)

Khi đó, \[A\left( {0\,;\,\,0\,;\,\,0} \right)\,;\,\,B\left( {0\,;\,\,2\,\,500\,;\,\,0} \right)\,;\,\]\[\,C\left( {1\,\,800\,;\,\,2500\,;\,\,0} \right)\,;\]\[D\left( {1500\,\,;\,\,0\,;\,\,0} \right).\]

Khi hạ độ cao các điểm ở các điểm  xuống \[B,\,\,C,\,\,D\] thấp hơn so với độ cao ở \(A\) là \[10\,\,{\rm{cm}},\,\,a\,\,{\rm{cm}},\,\,6\,\,{\rm{cm}}\] tương ứng ta có các điểm mới \[B'\left( {0\,;\,\,2\,\,500\,;\,\, - 10} \right)\,;\,\,C'\left( {1800\,;\,\,2500\,;\,\, - a} \right)\,;\,\,\]\[D'\left( {1500\,;\,\,0\,;\,\, - 6} \right).\]

Theo bài ra có \(A,\,\,B',\,\,C',\,\,D'\) đồng phẳng.

Phương trình mặt phẳng \(\left( {AB'D'} \right):x + y + 250z = 0.\)

Do \[C'\left( {1\,\,800\,;\,\,2500\,;\,\, - a} \right) \in \left( {AB'D'} \right)\] nên có \(1800 + 2500 - 250a = 0 \Rightarrow a = 17,2.\)

Vậy \(a = 17,2\;\,{\rm{cm}}.\)Chọn B.

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP