Một khu dân cư có 85% các hộ gia đình sử dụng điện để đun nước. Hơn nữa, có 21% các hộ gia đình sử dụng ấm điện siêu tốc. Chọn ngẫu nhiên một hộ gia đình, tính xác suất hộ đó sử dụng ấm điện siêu tốc, biết hộ đó sử dụng điện để đun nước.
Một khu dân cư có 85% các hộ gia đình sử dụng điện để đun nước. Hơn nữa, có 21% các hộ gia đình sử dụng ấm điện siêu tốc. Chọn ngẫu nhiên một hộ gia đình, tính xác suất hộ đó sử dụng ấm điện siêu tốc, biết hộ đó sử dụng điện để đun nước.
Quảng cáo
Trả lời:

Gọi A là biến cố “Hộ gia đình đó sử dụng điện để đun nước” và B là biến cố “Hộ gia đình đó sử dụng ấm điện siêu tốc”.
Theo đề ta có P(A) = 0,85; P(B) = 0,21; P(A|B) = 1.
Cần tính P(B|A).
Ta có \(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}} = \frac{{0,21}}{{0,85}} \approx 0,247\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi A là biến cố “Nhân viên được chọn là nữ” và B là biến cố “Nhân viên được chọn có mua bảo hiểm nhân thọ”.
Theo đề ta có P(A) = 0,45; P(B|A) = 0,07; \(P\left( {B|\overline A } \right) = 0,05\). Suy ra \(P\left( {\overline A } \right) = 0,55\)
a) Ta cần tính P(B).
Ta có \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)\) = 0,45.0,07 + 0,55.0,05 = 0,059.
b) Ta cần tính \(P\left( {\overline A |B} \right)\).
Ta có \(P\left( {\overline A |B} \right) = \frac{{P\left( {\overline A } \right).P\left( {B|\overline A } \right)}}{{P\left( B \right)}} = \frac{{0,55.0,05}}{{0,059}} = \frac{{55}}{{118}}\).
Lời giải
Gọi A là biến cố “Lấy được hai viên bi đỏ từ hộp thứ nhất” và B là biến cố “Lấy được hai viên bi đỏ từ hộp thứ 2”.
Ta có \(P\left( A \right) = \frac{{C_5^2}}{{C_6^2}} = \frac{2}{3}\), \(P\left( {B|A} \right) = \frac{{C_7^2}}{{C_{10}^2}} = \frac{7}{{15}}\).
Suy ra \(P\left( {\overline A } \right) = 1 - P\left( A \right) = \frac{1}{3}\); \(P\left( {B|\overline A } \right) = \frac{{C_6^2}}{{C_{10}^2}} = \frac{1}{3}\).
a) Ta cần tính P(B).
Ta có \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)\)\( = \frac{2}{3}.\frac{7}{{15}} + \frac{1}{3}.\frac{1}{3} = \frac{{19}}{{45}}\).
b) Cần tính P(A|B).
Có \(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}}\)\( = \frac{2}{3}.\frac{7}{{15}}:\frac{{19}}{{45}} = \frac{{14}}{{19}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.