Câu hỏi:
13/07/2024 24,437Có hai cái hộp giống nhau, hộp thứ nhất chứa 5 quả bóng bàn màu trắng và 3 quả bóng bàn màu vàng, hộp thứ hai chứa 4 quả bóng bàn màu trắng và 6 quả bóng bàn màu vàng. Các quả bóng có cùng kích thước và khối lượng. Minh lấy ra ngẫu nhiên 1 quả bóng từ hộp thứ nhất. Nếu quả bóng đó là bóng vàng thì Minh lấy ra ngẫu nhiên đồng thời 2 quả bóng từ hộp thứ hai; nếu quả bóng đó màu trắng thì Minh lấy ra ngẫu nhiên đồng thời 3 quả bóng từ hộp thứ hai.
a) Sử dụng sơ đồ hình cây, tính xác suất để có đúng 1 quả bóng màu vàng trong các quả bóng lấy ra từ hộp thứ hai.
b) Biết rằng các quả bóng lấy ra từ hộp thứ hai đều có màu trắng. Tính xác suất để quả bóng lấy ra từ hộp thứ nhất có màu vàng.
Câu hỏi trong đề: Giải SGK Toán 12 CTST Bài tập cuối chương 6 có đáp án !!
Quảng cáo
Trả lời:
Gọi A là biến cố “Lấy được quả bóng vàng ở hộp thứ nhất ”; B là biến cố “Lấy được đúng 1 quả bóng màu vàng ở hộp thứ hai” và C là biến cố “Các quả bóng lấy ra từ hộp thứ hai đều có màu trắng”.
Ta có \(P\left( A \right) = \frac{3}{8};P\left( {\overline A } \right) = \frac{5}{8}\); \(P\left( {B|A} \right) = \frac{{C_6^1.C_4^1}}{{C_{10}^2}} = \frac{8}{{15}}\); \(P\left( {B|\overline A } \right) = \frac{{C_6^1C_4^2}}{{C_{10}^3}} = \frac{3}{{10}}\).
a) Ta có sơ đồ cây
Dựa vào sơ đồ cây, ta có \(P\left( B \right) = \frac{1}{5} + \frac{3}{{16}} = \frac{{31}}{{80}}\).
b) Ta cần tính P(A|C).
Ta có \(P\left( {A|C} \right) = \frac{{P\left( A \right).P\left( {C|A} \right)}}{{P\left( C \right)}}\)
Ta có \(P\left( {C|A} \right) = \frac{{C_4^2}}{{C_{10}^2}} = \frac{2}{{15}}\); \(P\left( {C|\overline A } \right) = \frac{{C_4^3}}{{C_{10}^3}} = \frac{1}{{30}}\)
Mà \(P\left( C \right) = P\left( A \right).P\left( {C|A} \right) + P\left( {\overline A } \right).P\left( {C|\overline A } \right)\)\( = \frac{3}{8}.\frac{2}{{15}} + \frac{5}{8}.\frac{1}{{30}} = \frac{{17}}{{240}}\).
Vậy \(P\left( {A|C} \right) = \frac{3}{8}.\frac{2}{{15}}:\frac{{17}}{{240}} = \frac{{12}}{{17}}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi A là biến cố “Nhân viên được chọn là nữ” và B là biến cố “Nhân viên được chọn có mua bảo hiểm nhân thọ”.
Theo đề ta có P(A) = 0,45; P(B|A) = 0,07; \(P\left( {B|\overline A } \right) = 0,05\). Suy ra \(P\left( {\overline A } \right) = 0,55\)
a) Ta cần tính P(B).
Ta có \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)\) = 0,45.0,07 + 0,55.0,05 = 0,059.
b) Ta cần tính \(P\left( {\overline A |B} \right)\).
Ta có \(P\left( {\overline A |B} \right) = \frac{{P\left( {\overline A } \right).P\left( {B|\overline A } \right)}}{{P\left( B \right)}} = \frac{{0,55.0,05}}{{0,059}} = \frac{{55}}{{118}}\).
Lời giải
Gọi A là biến cố “Lấy được hai viên bi đỏ từ hộp thứ nhất” và B là biến cố “Lấy được hai viên bi đỏ từ hộp thứ 2”.
Ta có \(P\left( A \right) = \frac{{C_5^2}}{{C_6^2}} = \frac{2}{3}\), \(P\left( {B|A} \right) = \frac{{C_7^2}}{{C_{10}^2}} = \frac{7}{{15}}\).
Suy ra \(P\left( {\overline A } \right) = 1 - P\left( A \right) = \frac{1}{3}\); \(P\left( {B|\overline A } \right) = \frac{{C_6^2}}{{C_{10}^2}} = \frac{1}{3}\).
a) Ta cần tính P(B).
Ta có \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)\)\( = \frac{2}{3}.\frac{7}{{15}} + \frac{1}{3}.\frac{1}{3} = \frac{{19}}{{45}}\).
b) Cần tính P(A|B).
Có \(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}}\)\( = \frac{2}{3}.\frac{7}{{15}}:\frac{{19}}{{45}} = \frac{{14}}{{19}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận