Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình vuông cạnh \[a,\,\,SA\] vuông góc với đáy và \(SA = a.\) Điểm \(M\) nằm trên cạnh \[SA\] sao cho \(\frac{{SM}}{{SA}} = k.\) Khi mặt phẳng \(\left( {BMC} \right)\) chia khối chóp \[S.ABCD\] thành hai phần có thể tích bằng nhau thì giá trị của \(k\) bằng
C. \(\frac{{ - 1 + \sqrt 5 }}{4}.\)
Quảng cáo
Trả lời:
Vì \(BC\,{\rm{//}}\,AD\) nên mặt phẳng \(\left( {BMC} \right)\) cắt \((SAD)\) theo đoạn thẳng \(MN\,{\rm{//}}\,AD\,\,\left( {N \in SD} \right)\)
\(\frac{{{V_{S.BMC}}}}{{{V_{S.ABC}}}} = \frac{{SM}}{{SA}} = k\); \(\frac{{{V_{S.MNC}}}}{{{V_{S.ADC}}}} = \frac{{SM}}{{SA}} \cdot \frac{{SN}}{{SD}} = {k^2}\)
\( \Rightarrow {V_{S.MNC}} = {k^2} \cdot {V_{S.ADC}} = \frac{{{k^2}}}{2} \cdot {V_{S.ABCD}}\)\( \Rightarrow {V_{S.MBCN}} = \left( {\frac{k}{2} + \frac{{{k^2}}}{2}} \right) \cdot {V_{S.ABCD}}\).
Để \(\left( {BMC} \right)\) chia khối chóp \[S.ABCD\] thành hai phần có thể tích bằng nhau thì
\(\frac{k}{2} + \frac{{{k^2}}}{2} = \frac{1}{2} \Leftrightarrow {k^2} + k - 1 = 0 \Leftrightarrow k = \frac{{ - 1 + \sqrt 5 }}{2}\,\,\left( {k > 0} \right).\) Chọn B.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(f'\left( x \right) = m \cdot \frac{1}{{2\sqrt {x - 1} }}\).
Do \(m \ne 0\) nên \(f'\left( x \right) \ne 0\) và có dấu không thay đổi \(\forall x \in \left( {1\,;\,\, + \infty } \right).\)
TH1: Nếu \(m > 0\) thì \(f'\left( x \right) > 0\,,\,\,\forall x \in \left[ {2;\,\,5} \right].\)
Do đó \({\min _{\left[ {2;\,\,5} \right]}}f\left( x \right) = f(2) = m\,;\,\,{\max _{\left[ {2;\,\,5} \right]}}f\left( x \right) = f(5) = 2m.\)
Suy ra \({\min _{\left[ {2;\,\,5} \right]}}f\left( x \right) + {\max _{\left[ {2;\,\,5} \right]}}f\left( x \right) = {m^2} - 10\)
\( \Leftrightarrow m + 2m = {m^2} - 10\)\( \Leftrightarrow {m^2} - 3m - 10 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{m_1} = - 2}\\{{m_2} = 5}\end{array}} \right.\).
Do \(m > 0\) nên nhận \({m_2} = 5.\)
TH2: Nếu \(m < 0\) thì \(f'\left( x \right) < 0\,,\,\,\forall x \in \left[ {2;\,\,5} \right].\)
Do đó \({\min _{\left[ {2;\,\,5} \right]}}f\left( x \right) = f(5) = 2m\,;\,\,{\max _{\left[ {2;\,\,5} \right]}}f\left( x \right) = f(2) = m.\)
Suy ra \({\min _{\left[ {2;\,\,5} \right]}}f\left( x \right) + {\max _{\left[ {2;\,\,5} \right]}}f\left( x \right) = {m^2} - 10\)
\( \Leftrightarrow 2m + m = {m^2} - 10\)\( \Leftrightarrow {m^2} - 3m - 10 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{m_1} = - 2}\\{{m_2} = 5}\end{array}} \right.\).
Do \(m < 0\) nên nhận \({m_1} = - 2.\)
Vậy \({m_1} + {m_2} = 3.\) Chọn A.
Câu 2
Lời giải
Miền Bắc không có một mùa khô sâu sắc kéo dài. Chọn C.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. 140 triệu đồng và 180 triệu đồng.
B. 180 triệu đồng và 140 triệu đồng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.