Câu hỏi:

26/06/2024 161 Lưu

Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình vuông cạnh \[a,\,\,SA\] vuông góc với đáy và \(SA = a.\) Điểm \(M\) nằm trên cạnh \[SA\] sao cho \(\frac{{SM}}{{SA}} = k.\) Khi mặt phẳng \(\left( {BMC} \right)\) chia khối chóp \[S.ABCD\] thành hai phần có thể tích bằng nhau thì giá trị của \(k\) bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vì \(BC\,{\rm{//}}\,AD\) nên mặt phẳng \(\left( {BMC} \right)\) cắt \((SAD)\) theo đoạn thẳng \(MN\,{\rm{//}}\,AD\,\,\left( {N \in SD} \right)\)

\(\frac{{{V_{S.BMC}}}}{{{V_{S.ABC}}}} = \frac{{SM}}{{SA}} = k\); \(\frac{{{V_{S.MNC}}}}{{{V_{S.ADC}}}} = \frac{{SM}}{{SA}} \cdot \frac{{SN}}{{SD}} = {k^2}\)

\( \Rightarrow {V_{S.MNC}} = {k^2} \cdot {V_{S.ADC}} = \frac{{{k^2}}}{2} \cdot {V_{S.ABCD}}\)\( \Rightarrow {V_{S.MBCN}} = \left( {\frac{k}{2} + \frac{{{k^2}}}{2}} \right) \cdot {V_{S.ABCD}}\).

Để \(\left( {BMC} \right)\) chia khối chóp \[S.ABCD\] thành hai phần có thể tích bằng nhau thì

\(\frac{k}{2} + \frac{{{k^2}}}{2} = \frac{1}{2} \Leftrightarrow {k^2} + k - 1 = 0 \Leftrightarrow k = \frac{{ - 1 + \sqrt 5 }}{2}\,\,\left( {k > 0} \right).\) Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(f'\left( x \right) = m \cdot \frac{1}{{2\sqrt {x - 1} }}\).

Do \(m \ne 0\) nên \(f'\left( x \right) \ne 0\) và có dấu không thay đổi \(\forall x \in \left( {1\,;\,\, + \infty } \right).\)

TH1: Nếu \(m > 0\) thì \(f'\left( x \right) > 0\,,\,\,\forall x \in \left[ {2;\,\,5} \right].\)

Do đó \({\min _{\left[ {2;\,\,5} \right]}}f\left( x \right) = f(2) = m\,;\,\,{\max _{\left[ {2;\,\,5} \right]}}f\left( x \right) = f(5) = 2m.\)

Suy ra \({\min _{\left[ {2;\,\,5} \right]}}f\left( x \right) + {\max _{\left[ {2;\,\,5} \right]}}f\left( x \right) = {m^2} - 10\)

\( \Leftrightarrow m + 2m = {m^2} - 10\)\( \Leftrightarrow {m^2} - 3m - 10 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{m_1} =  - 2}\\{{m_2} = 5}\end{array}} \right.\).

Do \(m > 0\) nên nhận \({m_2} = 5.\)

TH2: Nếu \(m < 0\) thì \(f'\left( x \right) < 0\,,\,\,\forall x \in \left[ {2;\,\,5} \right].\)

Do đó \({\min _{\left[ {2;\,\,5} \right]}}f\left( x \right) = f(5) = 2m\,;\,\,{\max _{\left[ {2;\,\,5} \right]}}f\left( x \right) = f(2) = m.\)

Suy ra \({\min _{\left[ {2;\,\,5} \right]}}f\left( x \right) + {\max _{\left[ {2;\,\,5} \right]}}f\left( x \right) = {m^2} - 10\)

\( \Leftrightarrow 2m + m = {m^2} - 10\)\( \Leftrightarrow {m^2} - 3m - 10 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{m_1} =  - 2}\\{{m_2} = 5}\end{array}} \right.\).

Do \(m < 0\) nên nhận \({m_1} =  - 2.\)

Vậy \({m_1} + {m_2} = 3.\) Chọn A.

Câu 2

Lời giải

Học sinh đọc ngữ liệu, căn cứ vào các hình ảnh “chàng trai ra đảo đã quên mình, máu xương kia dằng dặc suốt ngàn đời, hồn dân tộc ngàn năm không chịu khuất” để thấy những suy ngẫm, chiêm nghiệm của tác giả, đồng thời cùng với đó là sự trân trọng, tự hào đối với lịch sử bảo vệ biển đảo, bảo vệ Tổ quốc. Học sinh căn cứ tiếp vào câu “Dáng con tàu vẫn hướng mãi ra khơi” để thấy sự tiến về phía trước của thế hệ tương lai, thể hiện trách nhiệm của thế hệ trẻ đối với công cuộc bảo vệ Tổ quốc. Chọn B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP