Câu hỏi:
12/07/2024 113Trong tập các số phức, phương trình \({z^2} - 6z + m = 0,m \in \mathbb{R}.\) Gọi \({m_0}\) là một giá trị \(m\) để phương trình có hai nghiệm phân biệt \({z_1},\,\,{z_2}\) thỏa mãn \({z_1},\overline {{z_1}} = {z_2} \cdot \overline {{z_2}} .\) Hỏi trong khoảng \(\left( {0\,;\,\,20} \right)\) có bao nhiêu giá trị \({m_0} \in \mathbb{N}?\)
Quảng cáo
Trả lời:
Để phương trình \({z^2} - 6z + m = 0\) có hai nghiệm phân biệt \({z_1},\,\,{z_2}\) thỏa mãn \({z_1} \cdot \overline {{z_1}} = {z_2} \cdot \overline {{z_2}} \) thì
\[\left[ \begin{array}{l}\left\{ \begin{array}{l}\Delta < 0 \Leftrightarrow {6^2} - 4m < 0 \Leftrightarrow m > 9\\{z_1} \cdot \overline {{z_1}} = {z_2} \cdot \overline {{z_2}} \Leftrightarrow {z_1},\,\,{z_2} = {z_2} \cdot {z_1}\,\,({\rm{TM}})\end{array} \right.\\\left\{ \begin{array}{l}\Delta > 0 \Leftrightarrow {6^2} - 4m > 0 \Leftrightarrow m < 9 \Leftrightarrow m > 9\\{z_1} \cdot \overline {{z_1}} = {z_2} \cdot \overline {{z_2}} \Leftrightarrow z_1^2 = z_2^2 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{z_1} = {z_2}\,\,(\;{\rm{L}})}\\{{z_1} = - {z_2} \Leftrightarrow {z_1} + {z_2} = 0 \Rightarrow 3 = 0\,\,(\;{\rm{L}})}\end{array}} \right.\end{array} \right.\end{array} \right.\]
Mà trong khoảng \(\left( {0\,;\,\,20} \right)\) và \({m_0} \in \mathbb{N}\) nên có 10 giá trị \({m_0}\) thoả mãn.
Đáp án: 10.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(f'\left( x \right) = m \cdot \frac{1}{{2\sqrt {x - 1} }}\).
Do \(m \ne 0\) nên \(f'\left( x \right) \ne 0\) và có dấu không thay đổi \(\forall x \in \left( {1\,;\,\, + \infty } \right).\)
TH1: Nếu \(m > 0\) thì \(f'\left( x \right) > 0\,,\,\,\forall x \in \left[ {2;\,\,5} \right].\)
Do đó \({\min _{\left[ {2;\,\,5} \right]}}f\left( x \right) = f(2) = m\,;\,\,{\max _{\left[ {2;\,\,5} \right]}}f\left( x \right) = f(5) = 2m.\)
Suy ra \({\min _{\left[ {2;\,\,5} \right]}}f\left( x \right) + {\max _{\left[ {2;\,\,5} \right]}}f\left( x \right) = {m^2} - 10\)
\( \Leftrightarrow m + 2m = {m^2} - 10\)\( \Leftrightarrow {m^2} - 3m - 10 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{m_1} = - 2}\\{{m_2} = 5}\end{array}} \right.\).
Do \(m > 0\) nên nhận \({m_2} = 5.\)
TH2: Nếu \(m < 0\) thì \(f'\left( x \right) < 0\,,\,\,\forall x \in \left[ {2;\,\,5} \right].\)
Do đó \({\min _{\left[ {2;\,\,5} \right]}}f\left( x \right) = f(5) = 2m\,;\,\,{\max _{\left[ {2;\,\,5} \right]}}f\left( x \right) = f(2) = m.\)
Suy ra \({\min _{\left[ {2;\,\,5} \right]}}f\left( x \right) + {\max _{\left[ {2;\,\,5} \right]}}f\left( x \right) = {m^2} - 10\)
\( \Leftrightarrow 2m + m = {m^2} - 10\)\( \Leftrightarrow {m^2} - 3m - 10 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{m_1} = - 2}\\{{m_2} = 5}\end{array}} \right.\).
Do \(m < 0\) nên nhận \({m_1} = - 2.\)
Vậy \({m_1} + {m_2} = 3.\) Chọn A.
Lời giải
Học sinh đọc ngữ liệu, căn cứ vào các hình ảnh “chàng trai ra đảo đã quên mình, máu xương kia dằng dặc suốt ngàn đời, hồn dân tộc ngàn năm không chịu khuất” để thấy những suy ngẫm, chiêm nghiệm của tác giả, đồng thời cùng với đó là sự trân trọng, tự hào đối với lịch sử bảo vệ biển đảo, bảo vệ Tổ quốc. Học sinh căn cứ tiếp vào câu “Dáng con tàu vẫn hướng mãi ra khơi” để thấy sự tiến về phía trước của thế hệ tương lai, thể hiện trách nhiệm của thế hệ trẻ đối với công cuộc bảo vệ Tổ quốc. Chọn B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận