Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a.\) Gọi \(\alpha \) là góc giữa đường thẳng \(A'B\) và mặt phẳng \(\left( {BB'D'D} \right).\) Tính \(\sin \alpha \).
Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a.\) Gọi \(\alpha \) là góc giữa đường thẳng \(A'B\) và mặt phẳng \(\left( {BB'D'D} \right).\) Tính \(\sin \alpha \).
Quảng cáo
Trả lời:

Chọn hệ trục toạ độ Oxyz với \[A \equiv O\left( {0\,;\,\,0\,;\,\,0} \right),\,\,B\left( {a\,;\,\,0\,;\,\,0} \right),\,\,C\left( {a\,;\,\,a\,;\,\,0} \right),\,\,D\left( {0\,;\,\,a\,;\,\,0} \right),\]\[\,\,A'\left( {0\,;\,0\,;\,a} \right)\], \(B'\left( {a\,;\,0\,;\,a} \right),C'\left( {a\,;\,a\,;\,a} \right),D'\left( {0\,;\,a\,;\,a} \right).\)
Ta thấy \(OC \bot \left( {BB'D'D} \right)\) và \(\overrightarrow {OC} = (a;a;0)\) nên suy ra mặt phẳng \(\left( {BB'D'D} \right)\) có một vectơ pháp tuyến là \[\vec n = \left( {1\,;\,\,1\,;\,\,0} \right).\]+ Đường thẳng \(A'B\) có vectơ chỉ phương là \(\overrightarrow {A'B} = \left( {a\,;\,\,0\,;\,\, - a} \right)\) ta chọn \(\vec u = \left( {1\,;\,\,0\,;\,\, - 1} \right).\)
+ Ta có \(\sin \alpha = \frac{{\left| {\vec n \cdot \vec u} \right|}}{{\left| {\vec n} \right| \cdot \left| {\vec u} \right|}} = \frac{{\left| {1 \cdot 1 + 1 \cdot 0 + 0 \cdot \left( { - 1} \right)} \right|}}{{\sqrt {{1^2} + {1^2} + {0^2}} \cdot \sqrt {{1^2} + {0^2} + {{\left( { - 1} \right)}^2}} }} = \frac{1}{2}.\)
Đáp án: \(\frac{1}{2}.\)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(f'\left( x \right) = m \cdot \frac{1}{{2\sqrt {x - 1} }}\).
Do \(m \ne 0\) nên \(f'\left( x \right) \ne 0\) và có dấu không thay đổi \(\forall x \in \left( {1\,;\,\, + \infty } \right).\)
TH1: Nếu \(m > 0\) thì \(f'\left( x \right) > 0\,,\,\,\forall x \in \left[ {2;\,\,5} \right].\)
Do đó \({\min _{\left[ {2;\,\,5} \right]}}f\left( x \right) = f(2) = m\,;\,\,{\max _{\left[ {2;\,\,5} \right]}}f\left( x \right) = f(5) = 2m.\)
Suy ra \({\min _{\left[ {2;\,\,5} \right]}}f\left( x \right) + {\max _{\left[ {2;\,\,5} \right]}}f\left( x \right) = {m^2} - 10\)
\( \Leftrightarrow m + 2m = {m^2} - 10\)\( \Leftrightarrow {m^2} - 3m - 10 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{m_1} = - 2}\\{{m_2} = 5}\end{array}} \right.\).
Do \(m > 0\) nên nhận \({m_2} = 5.\)
TH2: Nếu \(m < 0\) thì \(f'\left( x \right) < 0\,,\,\,\forall x \in \left[ {2;\,\,5} \right].\)
Do đó \({\min _{\left[ {2;\,\,5} \right]}}f\left( x \right) = f(5) = 2m\,;\,\,{\max _{\left[ {2;\,\,5} \right]}}f\left( x \right) = f(2) = m.\)
Suy ra \({\min _{\left[ {2;\,\,5} \right]}}f\left( x \right) + {\max _{\left[ {2;\,\,5} \right]}}f\left( x \right) = {m^2} - 10\)
\( \Leftrightarrow 2m + m = {m^2} - 10\)\( \Leftrightarrow {m^2} - 3m - 10 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{m_1} = - 2}\\{{m_2} = 5}\end{array}} \right.\).
Do \(m < 0\) nên nhận \({m_1} = - 2.\)
Vậy \({m_1} + {m_2} = 3.\) Chọn A.
Câu 2
Lời giải
Miền Bắc không có một mùa khô sâu sắc kéo dài. Chọn C.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. 140 triệu đồng và 180 triệu đồng.
B. 180 triệu đồng và 140 triệu đồng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.