Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O) đường kính AD = 2R. Gọi M là trung điểm của cạnh BC và H là trực tâm của tam giác ABC. Chứng minh:
Tứ giác BHCD là hình bình hành;
Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O) đường kính AD = 2R. Gọi M là trung điểm của cạnh BC và H là trực tâm của tam giác ABC. Chứng minh:
Quảng cáo
Trả lời:
Vì H là trực tâm của ∆ABC nên BH ⊥ AC và CH ⊥ AB.
Lại có CD ⊥ AC và DB ⊥ AB (câu a) nên BH // CD và CH // BD.
Xét tứ giác BHCD có BH // CD và CH // BD nên BHCD là hình bình hành.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giả sử đường tròn (I; 4 cm) nội tiếp tam giác đều ABC có cạnh bằng a (cm). Khi đó AB = a (cm).

Vì tam giác ABC đều ngoại tiếp đường tròn (I; 4 cm) nên ta có 
Suy ra 
Vậy ![]()
Lời giải

Giả sử tam giác ABC đều có cạnh bằng a (dm) nội tiếp đường tròn (O; 4 dm).
Khi đó AB = a (dm).
Vì tam giác đều ABC nội tiếp đường tròn (O) nên ta có 
Suy ra 
Vậy ![]()
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

