Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O) đường kính AD = 2R. Gọi M là trung điểm của cạnh BC và H là trực tâm của tam giác ABC. Chứng minh:
Tứ giác BHCD là hình bình hành;
Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O) đường kính AD = 2R. Gọi M là trung điểm của cạnh BC và H là trực tâm của tam giác ABC. Chứng minh:
Quảng cáo
Trả lời:

Vì H là trực tâm của ∆ABC nên BH ⊥ AC và CH ⊥ AB.
Lại có CD ⊥ AC và DB ⊥ AB (câu a) nên BH // CD và CH // BD.
Xét tứ giác BHCD có BH // CD và CH // BD nên BHCD là hình bình hành.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giả sử đường tròn (I; 4 cm) nội tiếp tam giác đều ABC có cạnh bằng a (cm). Khi đó AB = a (cm).
Vì tam giác ABC đều ngoại tiếp đường tròn (I; 4 cm) nên ta có
Suy ra
Vậy
Lời giải
Giả sử tam giác ABC đều có cạnh bằng a (dm) nội tiếp đường tròn (O; 4 dm).
Khi đó AB = a (dm).
Vì tam giác đều ABC nội tiếp đường tròn (O) nên ta có
Suy ra
Vậy
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.