Giải SGK Toán 9 CD Bài tập cuối chương 8 có đáp án
50 người thi tuần này 4.6 227 lượt thi 9 câu hỏi
🔥 Đề thi HOT:
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
Bộ 10 đề thi cuối kì 2 Toán 9 Chân trời sáng tạo có đáp án (Đề số 1)
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
123 bài tập Nón trụ cầu và hình khối có lời giải
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Đáp án đúng là: D
Vì tứ giác ABCD nội tiếp đường tròn nên
Suy ra
Câu 2
Cho đường tròn (I) nội tiếp tam giác ABC và lần lượt tiếp xúc với các cạnh BC, CA, AB tại M, N, P. Chứng minh: 
Cho đường tròn (I) nội tiếp tam giác ABC và lần lượt tiếp xúc với các cạnh BC, CA, AB tại M, N, P. Chứng minh:
Lời giải
Vì đường tròn (I) lần lượt tiếp xúc với các cạnh CA, AB tại N, P nên AC, AB là hai tiếp tuyến của (I) cắt nhau tại A.
Do đó nên IA là phân giác của góc PIN (tính chất hai tiếp tuyến cắt nhau)
Suy ra
Xét đường tròn (I) có và
lần lượt là góc ở tâm và góc nội tiếp cùng chắn cung PN nên
Từ (1) và (2) suy ra
Câu 3
Cho tam giác nhọn ABC nội tiếp đường tròn (O). Các đường cao AK, BM cắt nhau tại trực tâm H của tam giác ABC. Tia AK cắt đường tròn (O) tại điểm N (khác A). Chứng minh:

Cho tam giác nhọn ABC nội tiếp đường tròn (O). Các đường cao AK, BM cắt nhau tại trực tâm H của tam giác ABC. Tia AK cắt đường tròn (O) tại điểm N (khác A). Chứng minh:
Lời giải
Xét ∆ABC có các đường cao AK, BM cắt nhau tại trực tâm H nên AK ⊥ BC và BM ⊥ AC.
Vì ∆AKC vuông tại K có (tổng hai góc nhọn của tam giác vuông bằng 90°).
Vì ∆BMC vuông tại M có (tổng hai góc nhọn của tam giác vuông bằng 90°).
Suy ra
Câu 4
Cho tam giác nhọn ABC nội tiếp đường tròn (O). Các đường cao AK, BM cắt nhau tại trực tâm H của tam giác ABC. Tia AK cắt đường tròn (O) tại điểm N (khác A). Chứng minh:
Tam giác BHN cân
Cho tam giác nhọn ABC nội tiếp đường tròn (O). Các đường cao AK, BM cắt nhau tại trực tâm H của tam giác ABC. Tia AK cắt đường tròn (O) tại điểm N (khác A). Chứng minh:
Lời giải
Xét đường tròn (O) có là hai góc nội tiếp cùng chắn cung CN nên
hay
Mà (câu a) nên
hay
Do đó BK là đường phân giác của góc HBN.
Câu 5
Cho tam giác nhọn ABC nội tiếp đường tròn (O). Các đường cao AK, BM cắt nhau tại trực tâm H của tam giác ABC. Tia AK cắt đường tròn (O) tại điểm N (khác A). Chứng minh:
BC là đường trung trực của HN.
Cho tam giác nhọn ABC nội tiếp đường tròn (O). Các đường cao AK, BM cắt nhau tại trực tâm H của tam giác ABC. Tia AK cắt đường tròn (O) tại điểm N (khác A). Chứng minh:
Lời giải
Vì ∆BHN cân tại B (câu b) nên đường cao BK đồng thời là đường trung trực của HN.
Vậy BC đường trung trực của HN.
Lời giải
Vì tứ giác ABDC nội tiếp đường tròn (O) nên các góc đối diện có tổng số đo bằng 180°. Do đó:
Mà (hai góc kề bù) nên
Lời giải

Xét ∆IAD và ∆ICB, có:
(do
và
là góc chung
Do đó ∆IAD ᔕ ∆ICB (g.g)
Suy ra (tỉ số đồng dạng) nên IA . IB = IC . ID.
Câu 8
Cho tứ giác ABCD và các điểm M, N lần lượt thuộc các đoạn thẳng AB và CD sao cho các tứ giác AMND, BMNC là các tứ giác nội tiếp. Chứng minh 
Cho tứ giác ABCD và các điểm M, N lần lượt thuộc các đoạn thẳng AB và CD sao cho các tứ giác AMND, BMNC là các tứ giác nội tiếp. Chứng minh
Lời giải
Tứ giác AMND là tứ giác nội tiếp nên (tổng hai góc đối nhau của tứ giác nội tiếp bằng 180°).
Tứ giác BMNC là tứ giác nội tiếp nên (tổng hai góc đối nhau của tứ giác nội tiếp bằng 180°).
Suy ra
Lại có (hai góc kề bù)
Nên
Vậy
Câu 9
Khung thép của một phần sân khấu có dạng đường tròn bán kính 15 m. Mắt của một người thợ ở vị trí A nhìn hai đèn ở các vị trí B, C (A, B, C cùng thuộc đường tròn bán kính 15 m), bằng cách nào đó, người thợ thấy rằng góc nhìn
(Hình 31). Khoảng cách giữa hai vị trí B, C bằng bao nhiêu mét?

Khung thép của một phần sân khấu có dạng đường tròn bán kính 15 m. Mắt của một người thợ ở vị trí A nhìn hai đèn ở các vị trí B, C (A, B, C cùng thuộc đường tròn bán kính 15 m), bằng cách nào đó, người thợ thấy rằng góc nhìn (Hình 31). Khoảng cách giữa hai vị trí B, C bằng bao nhiêu mét?
Lời giải
Gọi O là tâm đường tròn bán kính 15 m.
Xét đường tròn (O) có lần lượt là góc ở tâm và góc nội tiếp cùng chắn cung BC nên
suy ra
Xét ∆OBC có OB = OC = 15 m (điểm B và điểm C cùng nằm trên (O; 15 m)) và nên ∆OBC là tam giác đều.
Suy ra BC = OB = 15 m.
Vậy khoảng cách giữa hai vị trí B, C bằng 15 mét.
45 Đánh giá
50%
40%
0%
0%
0%