Câu hỏi:

13/07/2024 331

Cho tứ giác ABCD và các điểm M, N lần lượt thuộc các đoạn thẳng AB và CD sao cho các tứ giác AMND, BMNC là các tứ giác nội tiếp. Chứng minh

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Tứ giác AMND là tứ giác nội tiếp nên (tổng hai góc đối nhau của tứ giác nội tiếp bằng 180°).

Tứ giác BMNC là tứ giác nội tiếp nên  (tổng hai góc đối nhau của tứ giác nội tiếp bằng 180°).

Suy ra

Lại có (hai góc kề bù)

Nên

Vậy

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn (I) nội tiếp tam giác ABC và lần lượt tiếp xúc với các cạnh BC, CA, AB tại M, N, P. Chứng minh:

Xem đáp án » 13/07/2024 1,078

Câu 2:

Khung thép của một phần sân khấu có dạng đường tròn bán kính 15 m. Mắt của một người thợ ở vị trí A nhìn hai đèn ở các vị trí B, C (A, B, C cùng thuộc đường tròn bán kính 15 m), bằng cách nào đó, người thợ thấy rằng góc nhìn  (Hình 31). Khoảng cách giữa hai vị trí B, C bằng bao nhiêu mét?

Xem đáp án » 13/07/2024 347

Câu 3:

Cho tứ giác nội tiếp ABCD có hai tia CD và BA cắt nhau tại I. Chứng minh:

IA . IB = ID . IC

Xem đáp án » 13/07/2024 239

Câu 4:

Cho tam giác nhọn ABC nội tiếp đường tròn (O). Các đường cao AK, BM cắt nhau tại trực tâm H của tam giác ABC. Tia AK cắt đường tròn (O) tại điểm N (khác A). Chứng minh:

BC là đường trung trực của HN.

Xem đáp án » 13/07/2024 160

Câu 5:

Cho tứ giác ABCD nội tiếp đường tròn có  Số đo góc A là:

A. 80°.

B. 160°.

C. 40°.

D. 100°.

Xem đáp án » 13/07/2024 127

Câu 6:

Cho tam giác nhọn ABC nội tiếp đường tròn (O). Các đường cao AK, BM cắt nhau tại trực tâm H của tam giác ABC. Tia AK cắt đường tròn (O) tại điểm N (khác A). Chứng minh:

Tam giác BHN cân

Xem đáp án » 13/07/2024 107

Bình luận


Bình luận