Câu hỏi:

13/07/2024 1,918

Cho tứ giác ABCD và các điểm M, N lần lượt thuộc các đoạn thẳng AB và CD sao cho các tứ giác AMND, BMNC là các tứ giác nội tiếp. Chứng minh

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Tứ giác AMND là tứ giác nội tiếp nên (tổng hai góc đối nhau của tứ giác nội tiếp bằng 180°).

Tứ giác BMNC là tứ giác nội tiếp nên  (tổng hai góc đối nhau của tứ giác nội tiếp bằng 180°).

Suy ra

Lại có (hai góc kề bù)

Nên

Vậy

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

đường tròn (I) lần lượt tiếp xúc với các cạnh CA, AB tại N, P nên AC, AB là hai tiếp tuyến của (I) cắt nhau tại A.

Do đó nên IA là phân giác của góc PIN (tính chất hai tiếp tuyến cắt nhau)

Suy ra

Xét đường tròn (I) có lần lượt là góc ở tâm và góc nội tiếp cùng chắn cung PN nên

Từ (1) và (2) suy ra

Lời giải

Gọi O là tâm đường tròn bán kính 15 m.

Xét đường tròn (O) có lần lượt là góc ở tâm và góc nội tiếp cùng chắn cung BC nên suy ra

Xét ∆OBCOB = OC = 15 m (điểm B và điểm C cùng nằm trên (O; 15 m)) nên ∆OBC là tam giác đều.

Suy ra BC = OB = 15 m.

Vậy khoảng cách giữa hai vị trí B, C bằng 15 mét.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP