Cho tứ giác ABCD và các điểm M, N lần lượt thuộc các đoạn thẳng AB và CD sao cho các tứ giác AMND, BMNC là các tứ giác nội tiếp. Chứng minh 
Cho tứ giác ABCD và các điểm M, N lần lượt thuộc các đoạn thẳng AB và CD sao cho các tứ giác AMND, BMNC là các tứ giác nội tiếp. Chứng minh ![]()
Câu hỏi trong đề: Giải SGK Toán 9 CD Bài tập cuối chương 8 có đáp án !!
Quảng cáo
Trả lời:

Tứ giác AMND là tứ giác nội tiếp nên
(tổng hai góc đối nhau của tứ giác nội tiếp bằng 180°).
Tứ giác BMNC là tứ giác nội tiếp nên
(tổng hai góc đối nhau của tứ giác nội tiếp bằng 180°).
Suy ra ![]()
Lại có
(hai góc kề bù)
Nên ![]()
Vậy ![]()
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Vì đường tròn (I) lần lượt tiếp xúc với các cạnh CA, AB tại N, P nên AC, AB là hai tiếp tuyến của (I) cắt nhau tại A.
Do đó nên IA là phân giác của góc PIN (tính chất hai tiếp tuyến cắt nhau)
Suy ra ![]()
Xét đường tròn (I) có
và
lần lượt là góc ở tâm và góc nội tiếp cùng chắn cung PN nên 
Từ (1) và (2) suy ra ![]()
Lời giải

Gọi O là tâm đường tròn bán kính 15 m.
Xét đường tròn (O) có
lần lượt là góc ở tâm và góc nội tiếp cùng chắn cung BC nên
suy ra ![]()
Xét ∆OBC có OB = OC = 15 m (điểm B và điểm C cùng nằm trên (O; 15 m)) và
nên ∆OBC là tam giác đều.
Suy ra BC = OB = 15 m.
Vậy khoảng cách giữa hai vị trí B, C bằng 15 mét.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

