Giải SBT Toán 9 Cánh diều Bài 3. Định lí Viète có đáp án
53 người thi tuần này 4.6 347 lượt thi 10 câu hỏi
🔥 Đề thi HOT:
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
12 bài tập Một số bài toán thực tế liên quan đến bất đẳng thức có lời giải
12 bài tập Một số bài toán thực tế liên quan đến bất phương trình bậc nhất một ẩn có lời giải
Tổng hợp các bài toán thực tế ôn thi vào 10 Toán 9 có đáp án (Phần 2: Hình học)
12 bài tập Một số bài toán thực tế liên quan đến độ dài cung tròn, diện tích hình quạt tròn và hình vành khuyên có lời giải
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
a) Phương trình \(7{x^2} + 3\sqrt 3 x - 7 + 3\sqrt 3 = 0\) có các hệ số: a = 7; \[b = 3\sqrt 3 ;\,\,c = - 7 + 3\sqrt 3 .\]
Ta thấy: \[a - b + c = 7 - 3\sqrt 3 - 7 + 3\sqrt 3 = 0.\]
Do đó, phương trình \(7{x^2} + 3\sqrt 3 x - 7 + 3\sqrt 3 = 0\) có hai nghiệm là \({x_1} = - 1;\,\,{x_2} = \frac{{7 - 3\sqrt 3 }}{7}.\)
b) Phương trình –2x2 + (5m + 1)x – 5m + 1 = 0 có các hệ số: a = ‒2; b = 5m + 1; c = ‒5m + 1.
Ta thấy: a + b + c = ‒2 + 5m + 1 ‒ 5m + 1 = 0.
Do đó, phương trình –2x2 + (5m + 1)x – 5m + 1 = 0 có hai nghiệm là \({x_1} = 1;\,\,{x_2} = \frac{{ - 5m + 1}}{{ - 2}} = \frac{{5m - 1}}{2}.\)
Lời giải
a) Phương trình \({x^2} + x - 2 + \sqrt 2 = 0\) có \(\Delta = {1^2} - 4 \cdot 1 \cdot \left( { - 2 + \sqrt 2 } \right) = 9 - 4\sqrt 2 > 0.\)
Do đó phương trình trên có hai nghiệm phân biệt.
Theo định lí Viète, ta có \({x_1}{x_2} = - 2 + \sqrt 2 .\)
Ta thấy tích của hai nghiệm là \( - 2 + \sqrt 2 < 0.\)
Do đó phương trình có hai nghiệm x1, x2 trái dấu.
b) Theo định lí Viète, ta có \({x_1} + {x_2} = - 1;\,\,{x_1}{x_2} = - 2 + \sqrt 2 .\) Khi đó:
⦁ \[A = x_1^2 + x_2^2 = x_1^2 + x_2^2 + 2{x_1}{x_2} - 2{x_1}{x_2} = {\left( {{x_1} + {\rm{ }}{x_2}} \right)^2} - 2{x_1}{x_2}\]
\[ = {\left( { - 1} \right)^2} - 2\left( { - 2 + \sqrt 2 } \right) = 1 + 4 - 2\sqrt 2 = 5 - 2\sqrt 2 .\]
⦁ \[B = x_1^3 + x_2^3 = \left( {{x_1} + {x_2}} \right)\left( {x_1^2 - {x_1}{x_2} + x_2^2} \right)\]
\[ = \left( {{x_1} + {x_2}} \right)\left( {x_1^2 + x_2^2 + 2{x_1}{x_2} - 3{x_1}{x_2}} \right)\]
\[ = \left( {{x_1} + {x_2}} \right)\left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - 3{x_1}{x_2}} \right]\]
\[ = - 1 \cdot \left[ {{{\left( { - 1} \right)}^2} - 3\left( { - 2 + \sqrt 2 } \right)} \right]\]
\[ = - \left( {1 + 6 - 3\sqrt 2 } \right)\]\[ = - 7 + 3\sqrt 2 .\]
⦁ \[C = \frac{1}{{{x_1}}} + \frac{1}{{{x_2}}} = \frac{{{x_1} + {x_2}}}{{{x_1} \cdot {x_2}}} = \frac{{ - 1}}{{ - 2 + \sqrt 2 }} = \frac{1}{{2 - \sqrt 2 }}\]
\[ = \frac{1}{{2 - \sqrt 2 }} = \frac{{2 + \sqrt 2 }}{{\left( {2 - \sqrt 2 } \right)\left( {2 + \sqrt 2 } \right)}}\]
\[ = \frac{{2 + \sqrt 2 }}{{4 - 2}} = \frac{{2 + \sqrt 2 }}{2} = 1 + \frac{{\sqrt 2 }}{2}.\]
⦁ D = |x1 – x2|
\[{D^2} = {\left| {{x_1} - {x_2}} \right|^2} = {\left( {{x_1} - {x_2}} \right)^2} = x_1^2 - 2{x_1}{x_2} + x_2^2 = {\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}{x_2}\]
\( = 1 - 4 \cdot \left( { - 2 + \sqrt 2 } \right) = 1 + 8 - 4\sqrt 2 \)
\( = 9 - 4\sqrt 2 = {\left( {2\sqrt 2 } \right)^2} - 2 \cdot 2\sqrt 2 \cdot 1 + {1^2} = {\left( {2\sqrt 2 - 1} \right)^2}.\)
Do đó \(D = \sqrt {{{\left( {2\sqrt 2 - 1} \right)}^2}} = \left| {2\sqrt 2 - 1} \right| = 2\sqrt 2 - 1.\)
Lời giải
a) Phương trình có ∆ = (5k)2 ‒ 4.(‒1).4 = 25k2 + 16.
Do k2 ≥ 0 nên 25k2 + 16 > 0.
Do đó phương trình trên có hai nghiệm phân biệt.
Theo định lí Viète ta có: x1 + x2 = 5k; x1x2 = ‒4.
Theo bài, \[x_1^2 + x_2^2 + 6{x_1}{x_2} = 9\]
\[x_1^2 + x_2^2 + 2{x_1}{x_2} + 4{x_1}{x_2} = 9\]
\[{\left( {{x_1} + {x_2}} \right)^2} + 4{x_1}{x_2} = 9\]
Thay x1 + x2 = 5k và x1x2 = ‒4 vào đẳng thức trên ta được:
(5k)2 + 4.(‒4) = 9
25k2 ‒16 = 9
k2 = 1
k = 1 hoặc k = ‒1.
Vậy k ∈ {‒1; 1}.
b) Nếu k ≠ 0, thì phương trình đã cho là phương trình bậc hai, có
∆’ = [‒3(k ‒ 1)]2 ‒ k.9(k ‒ 3)
= (‒3k + 3)2 ‒ 9k2 + 27k
= 9k2 ‒ 18k + 9 ‒ 9k2 + 27k
= 9k + 9.
Để phương trình có hai nghiệm thì ∆ ≥ 0, tức là 9k + 9 ≥ 0 hay k ≥ ‒1.
Theo định lí Viète ta có: \[{x_1} + {x_2} = \frac{{6\left( {k - 1} \right)}}{k};\,\,{x_1}{x_2} = \frac{{9\left( {k - 3} \right)}}{k}.\]
Thay \[{x_1} + {x_2} = \frac{{6\left( {k - 1} \right)}}{k}\] và \[{x_1}{x_2} = \frac{{9\left( {k - 3} \right)}}{k}\] vào đẳng thức x1 + x2 – x1 x2 = 0 ta có:
\[\frac{{6\left( {k - 1} \right)}}{k} - \frac{{9\left( {k - 3} \right)}}{k} = 0\]
\[\frac{{6\left( {k - 1} \right) - 9\left( {k - 3} \right)}}{k} = 0\]
6k ‒ 6 ‒ 9k + 27 = 0
‒3k = ‒21
k = 7 (thỏa mãn điều kiện k ≥ ‒1 và k ≠ 0).
Vậy k = 7.
Lời giải
a) Phương trình đã cho có:
∆ = 4(2m + 1)2 ‒ 4.(‒4m2 ‒ 1) = 4(2m + 1)2 + 16m2 + 4.
Với mọi m, ta có: (2m + 1)2 ≥ 0 và 16m2 ≥ 0
Suy ra 4(2m + 1)2 + 16m2 + 4 > 0 với mọi m hay ∆ > 0 với mọi m.
Vậy phương trình luôn có hai nghiệm phân biệt x1, x2 với mọi giá trị của m.
b) Theo định lí Viète ta có:
x1 + x2 = ‒2(2m + 1) = ‒ 4m ‒ 2 và x1x2 = ‒4m2 ‒1.
⦁ Từ x1 + x2 = ‒ 4m ‒ 2 ta có ‒ 4m = x1 + x2 + 2 nên \[m = \frac{{{x_1} + {x_2} + 2}}{{ - 4}}.\]
Suy ra \[{m^2} = {\left( {\frac{{{x_1} + {x_2} + 2}}{{ - 4}}} \right)^2}\]
⦁ Từ x1x2 = ‒4m2 ‒1, suy ra ‒4m2 = x1x2 + 1, suy ra \[{m^2} = \frac{{{x_1}{x_2} + 1}}{{ - 4}}.\]
Khi đó, ta có: \[{\left( {\frac{{{x_1} + {x_2} + 2}}{{ - 4}}} \right)^2} = \frac{{{x_1}{x_2} + 1}}{{ - 4}}\]
\[\frac{{{{\left( {{x_1} + {x_2} + 2} \right)}^2}}}{{{{\left( { - 4} \right)}^2}}} = \frac{{{x_1}{x_2} + 1}}{{ - 4}}\]
\[\frac{{{{\left( {{x_1} + {x_2} + 2} \right)}^2}}}{{ - 4}} = {x_1}{x_2} + 1\]
(x1 + x2 + 2)2 + 4x1x2 + 4 = 0.
Vậy biểu thức liên hệ giữa hai nghiệm x1, x2 không phụ thuộc vào giá trị của m là:
(x1 + x2 + 2)2 + 4x1x2 + 4 = 0.
Lời giải
a) Phương trình có: ∆’ = (k + 1)2 – (k2 + 2k) = k2 + 2k + 1 – k2 – 2k = 1 > 0.
Do đó phương trình đã cho luôn có hai nghiệm phân biệt với mọi giá trị của k.
Theo định lí Viète, ta có: x1 + x2 = –2(k + 1) và x1x2 = k2 + 2k.
Theo bài, |x1|.|x2| = 1 ta có |x1x2| = 1.
Suy ra |k2 + 2k| = 1.
Do đó k2 + 2k = –1 hoặc k2 + 2k = 1.
⦁ Giải phương trình: k2 + 2k = –1
k2 + 2k + 1 = 0
(k + 1)2 = 0
k + 1 = 0
k = –1.
⦁ Giải phương trình: k2 + 2k = 1
k2 + 2k – 1 = 0
Phương trình trên có ∆’ = 12 – 1.(–1) = 2 > 0.
Do đó phương trình này có hai nghiệm phân biệt là:
\(k = - 1 + \sqrt 2 \) hoặc \(k = - 1 - \sqrt 2 .\)
Dễ thấy, nếu \(k = - 1,\,\,k = - 1 + \sqrt 2 ,\,\,k = - 1 - \sqrt 2 \) thì phương trình đã cho có hai nghiệm phân biệt x1, x2 thoả mãn |x1|.|x2| = 1.
Vậy \(k = - 1,\,\,k = - 1 + \sqrt 2 ,\,\,k = - 1 - \sqrt 2 \) là các giá trị cần tìm.
b*) ⦁ Để phương trình đã cho có hai nghiệm trái dấu thì tích của hai nghiệm là số âm, do đó x1x2 < 0, tức là k2 + 2k < 0.
Giải bất phương trình:
k2 + 2k < 0.
k(k + 2) < 0
Suy ra k < 0 và k + 2 > 0 (do đề bài đã cho điều kiện k < 0).
k < 0 và k > –2
–2 < k < 0.
Do đó điều kiện để phương trình có hai nghiệm trái dấu là –2 < k < 0. (*)
Giả sử x1 < 0 < x2.
⦁ Để phương trình đã cho có nghiệm dương nhỏ hơn giá trị tuyệt đối của nghiệm âm, tức là x2 < 0 < |x1|.
Mà x1 < 0 nên |x1| = –x1.
Khi đó, ta có x2 < –x1 hay x1 + x2 < 0.
Tức là, –2(k + 1) < 0
k + 1 > 0
k > –1. (**).
Kết hợp hai điều kiện (*) và (**), ta có –1 < k < 0.
Dễ thấy, với các giá trị k sao cho –1 < k < 0 thì phương trình đã cho luôn có hai nghiệm x1, x2 trái dấu và nghiệm dương nhỏ hơn giá trị tuyệt đối của nghiệm âm.
Vậy các giá trị k cần tìm là các giá trị k sao cho –1 < k < 0.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.