Câu hỏi:

25/08/2024 3,225

Cho phương trình \({x^2} + x - 2 + \sqrt 2 = 0.\)

a) Chứng tỏ rằng phương trình có hai nghiệm x1, x2 trái dấu.

b) Không giải phương trình, tính:

\[A = x_1^2 + x_2^2;\,\,B = x_1^3 + x_2^3;\] \(C = \frac{1}{{{x_1}}} + \frac{1}{{{x_2}}};\) D = |x1 x2|.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Phương trình \({x^2} + x - 2 + \sqrt 2 = 0\)\(\Delta = {1^2} - 4 \cdot 1 \cdot \left( { - 2 + \sqrt 2 } \right) = 9 - 4\sqrt 2 > 0.\)

Do đó phương trình trên có hai nghiệm phân biệt.

Theo định lí Viète, ta có \({x_1}{x_2} = - 2 + \sqrt 2 .\)

Ta thấy tích của hai nghiệm là \( - 2 + \sqrt 2 < 0.\)

Do đó phương trình có hai nghiệm x1, x2 trái dấu.

b) Theo định lí Viète, ta có \({x_1} + {x_2} = - 1;\,\,{x_1}{x_2} = - 2 + \sqrt 2 .\) Khi đó:

\[A = x_1^2 + x_2^2 = x_1^2 + x_2^2 + 2{x_1}{x_2} - 2{x_1}{x_2} = {\left( {{x_1} + {\rm{ }}{x_2}} \right)^2} - 2{x_1}{x_2}\]

\[ = {\left( { - 1} \right)^2} - 2\left( { - 2 + \sqrt 2 } \right) = 1 + 4 - 2\sqrt 2 = 5 - 2\sqrt 2 .\]

\[B = x_1^3 + x_2^3 = \left( {{x_1} + {x_2}} \right)\left( {x_1^2 - {x_1}{x_2} + x_2^2} \right)\]

\[ = \left( {{x_1} + {x_2}} \right)\left( {x_1^2 + x_2^2 + 2{x_1}{x_2} - 3{x_1}{x_2}} \right)\]

\[ = \left( {{x_1} + {x_2}} \right)\left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - 3{x_1}{x_2}} \right]\]

\[ = - 1 \cdot \left[ {{{\left( { - 1} \right)}^2} - 3\left( { - 2 + \sqrt 2 } \right)} \right]\]

\[ = - \left( {1 + 6 - 3\sqrt 2 } \right)\]\[ = - 7 + 3\sqrt 2 .\]

\[C = \frac{1}{{{x_1}}} + \frac{1}{{{x_2}}} = \frac{{{x_1} + {x_2}}}{{{x_1} \cdot {x_2}}} = \frac{{ - 1}}{{ - 2 + \sqrt 2 }} = \frac{1}{{2 - \sqrt 2 }}\]

\[ = \frac{1}{{2 - \sqrt 2 }} = \frac{{2 + \sqrt 2 }}{{\left( {2 - \sqrt 2 } \right)\left( {2 + \sqrt 2 } \right)}}\]

\[ = \frac{{2 + \sqrt 2 }}{{4 - 2}} = \frac{{2 + \sqrt 2 }}{2} = 1 + \frac{{\sqrt 2 }}{2}.\]

D = |x1 x2|

\[{D^2} = {\left| {{x_1} - {x_2}} \right|^2} = {\left( {{x_1} - {x_2}} \right)^2} = x_1^2 - 2{x_1}{x_2} + x_2^2 = {\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}{x_2}\]

 \( = 1 - 4 \cdot \left( { - 2 + \sqrt 2 } \right) = 1 + 8 - 4\sqrt 2 \)

 \( = 9 - 4\sqrt 2 = {\left( {2\sqrt 2 } \right)^2} - 2 \cdot 2\sqrt 2 \cdot 1 + {1^2} = {\left( {2\sqrt 2 - 1} \right)^2}.\)

Do đó \(D = \sqrt {{{\left( {2\sqrt 2 - 1} \right)}^2}} = \left| {2\sqrt 2 - 1} \right| = 2\sqrt 2 - 1.\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Phương trình đã cho có:

∆ = 4(2m + 1)2 ‒ 4.(‒4m2 ‒ 1) = 4(2m + 1)2 + 16m2 + 4.

Với mọi m, ta có: (2m + 1)2 ≥ 0 16m2 ≥ 0

Suy ra 4(2m + 1)2 + 16m2 + 4 > 0 với mọi m hay > 0 với mọi m.

Vậy phương trình luôn có hai nghiệm phân biệt x1, x2 với mọi giá trị của m.

b) Theo định lí Vte ta có:

x1 + x2 = ‒2(2m + 1) = ‒ 4m ‒ 2 x1x2 = ‒4m2 ‒1.

Từ x1 + x2 = 4m ‒ 2 ta có 4m = x1 + x2 + 2 nên \[m = \frac{{{x_1} + {x_2} + 2}}{{ - 4}}.\]

Suy ra \[{m^2} = {\left( {\frac{{{x_1} + {x_2} + 2}}{{ - 4}}} \right)^2}\]

Từ x1x2 = ‒4m2 ‒1, suy ra ‒4m2 = x1x2 + 1, suy ra \[{m^2} = \frac{{{x_1}{x_2} + 1}}{{ - 4}}.\]

Khi đó, ta có: \[{\left( {\frac{{{x_1} + {x_2} + 2}}{{ - 4}}} \right)^2} = \frac{{{x_1}{x_2} + 1}}{{ - 4}}\]

\[\frac{{{{\left( {{x_1} + {x_2} + 2} \right)}^2}}}{{{{\left( { - 4} \right)}^2}}} = \frac{{{x_1}{x_2} + 1}}{{ - 4}}\]

\[\frac{{{{\left( {{x_1} + {x_2} + 2} \right)}^2}}}{{ - 4}} = {x_1}{x_2} + 1\]

(x1 + x2 + 2)2 + 4x1x2 + 4 = 0.

Vậy biểu thức liên hệ giữa hai nghiệm x1, x2 không phụ thuộc vào giá trị của m là:

(x1 + x2 + 2)2 + 4x1x2 + 4 = 0.

Lời giải

a) Phương trình đã cho có:

= (2m 1)2 4.(–m) = 4m2 – 4m + 1 + 4m = 4m2 + 1 > 0 với mọi giá trị của m.

Do đó phương trình đã cho luôn có hai nghiệm phân biệt với mọi giá trị của m.

b) Theo định lí Viète, ta có: x1 + x2 = –(2m 1) và x1x2 = –m.

Ta có: \(A = x_1^2 + x_2^2 - {x_1}{x_2} = {\left( {{x_1} + {x_2}} \right)^2} - 3{x_1}{x_2}\)

\( = {\left[ { - \left( {2m - 1} \right)} \right]^2} - 3\left( { - m} \right) = 4{m^2} - 4m + 1 + 3m\)

\( = 4{m^2} - m + 1 = \left( {4{m^2} - 2 \cdot 2m \cdot \frac{1}{4} + \frac{1}{{16}}} \right) + 1 - \frac{1}{{16}}\)

\( = {\left( {2m - \frac{1}{4}} \right)^2} + \frac{{15}}{{16}}.\)

Với mọi m, ta có: \[{\left( {2m - \frac{1}{4}} \right)^2} \ge 0\] nên \[{\left( {2m - \frac{1}{4}} \right)^2} + \frac{{15}}{{16}} \ge \frac{{15}}{{16}}\] hay \(A \ge \frac{{15}}{{16}}.\)

Vậy biểu thức \[A = x_1^2 + x_2^2 - {x_1}{x_2}\] đạt giá trị nhỏ nhất bằng \(\frac{{15}}{{16}}\) khi \[2m - \frac{1}{4} = 0\] hay \(m = \frac{1}{8}.\)

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay