Câu hỏi:

25/08/2024 2,247

Một mảnh đất hình chữ nhật có chiều rộng x (m), chiều dài gấp rưỡi chiều rộng. Người ta đã làm một vườn hoa ở trung tâm mảnh đất với diện tích bằng 640 m2 và làm một con đường rộng 2 m xung quanh vườn hoa đó (Hình 10). Hỏi chu vi của mảnh đất đó bằng bao nhiêu mét?

Một mảnh đất hình chữ nhật có chiều rộng x (m), chiều dài gấp rưỡi chiều rộng. Người ta đã làm một vườn hoa ở trung tâm mảnh đất với diện tích bằng 640 m^2 (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chiều dài ban đầu của mảnh đất hình chữ nhật là: 1,5x (m).

Chiều rộng của vườn hoa là: x – 2 – 2 = x – 4 (m).

Chiều dài của vườn hoa là: 1,5x – 2 – 2 = 1,5x – 4 (m).

Diện tích của vườn hoa là: (x – 4)(1,5x – 4) (m2).

Theo bài, vườn hoa ở trung tâm mảnh đất có diện tích bằng 640 m2 nên ta có phương trình: (x – 4)(1,5x – 4) = 640.

Giải phương trình:

(x – 4)(1,5x – 4) = 640

1,5x2 – 4x – 6x + 16 = 640

1,5x2 – 10x – 624 = 0.

Phương trình trên có ∆’ = (–5)2 – 1,5.(–624) = 961 > 0 và \(\sqrt {\Delta '} = \sqrt {961} = 31.\)

Do đó phương trình này có hai nghiệm phân biệt là:

\({x_1} = \frac{{5 + 31}}{{1,5}} = \frac{{36}}{{1,5}} = 24;\)

\({x_2} = \frac{{5 - 31}}{{1,5}} = \frac{{ - 26}}{{1,5}} = \frac{{ - 52}}{3}.\)

Ta thấy chỉ có giá trị x1 = 24 thỏa mãn x > 0.

Do đó, mảnh đất có chiều rộng là 24 m, chiều dài là 1,5.24 = 36 m.

Vậy chu vi của mảnh đất hình chữ nhật đó là 2.(24 + 36) = 120 (m).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Phương trình đã cho có:

∆ = 4(2m + 1)2 ‒ 4.(‒4m2 ‒ 1) = 4(2m + 1)2 + 16m2 + 4.

Với mọi m, ta có: (2m + 1)2 ≥ 0 16m2 ≥ 0

Suy ra 4(2m + 1)2 + 16m2 + 4 > 0 với mọi m hay > 0 với mọi m.

Vậy phương trình luôn có hai nghiệm phân biệt x1, x2 với mọi giá trị của m.

b) Theo định lí Vte ta có:

x1 + x2 = ‒2(2m + 1) = ‒ 4m ‒ 2 x1x2 = ‒4m2 ‒1.

Từ x1 + x2 = 4m ‒ 2 ta có 4m = x1 + x2 + 2 nên \[m = \frac{{{x_1} + {x_2} + 2}}{{ - 4}}.\]

Suy ra \[{m^2} = {\left( {\frac{{{x_1} + {x_2} + 2}}{{ - 4}}} \right)^2}\]

Từ x1x2 = ‒4m2 ‒1, suy ra ‒4m2 = x1x2 + 1, suy ra \[{m^2} = \frac{{{x_1}{x_2} + 1}}{{ - 4}}.\]

Khi đó, ta có: \[{\left( {\frac{{{x_1} + {x_2} + 2}}{{ - 4}}} \right)^2} = \frac{{{x_1}{x_2} + 1}}{{ - 4}}\]

\[\frac{{{{\left( {{x_1} + {x_2} + 2} \right)}^2}}}{{{{\left( { - 4} \right)}^2}}} = \frac{{{x_1}{x_2} + 1}}{{ - 4}}\]

\[\frac{{{{\left( {{x_1} + {x_2} + 2} \right)}^2}}}{{ - 4}} = {x_1}{x_2} + 1\]

(x1 + x2 + 2)2 + 4x1x2 + 4 = 0.

Vậy biểu thức liên hệ giữa hai nghiệm x1, x2 không phụ thuộc vào giá trị của m là:

(x1 + x2 + 2)2 + 4x1x2 + 4 = 0.

Lời giải

a) Phương trình đã cho có:

= (2m 1)2 4.(–m) = 4m2 – 4m + 1 + 4m = 4m2 + 1 > 0 với mọi giá trị của m.

Do đó phương trình đã cho luôn có hai nghiệm phân biệt với mọi giá trị của m.

b) Theo định lí Viète, ta có: x1 + x2 = –(2m 1) và x1x2 = –m.

Ta có: \(A = x_1^2 + x_2^2 - {x_1}{x_2} = {\left( {{x_1} + {x_2}} \right)^2} - 3{x_1}{x_2}\)

\( = {\left[ { - \left( {2m - 1} \right)} \right]^2} - 3\left( { - m} \right) = 4{m^2} - 4m + 1 + 3m\)

\( = 4{m^2} - m + 1 = \left( {4{m^2} - 2 \cdot 2m \cdot \frac{1}{4} + \frac{1}{{16}}} \right) + 1 - \frac{1}{{16}}\)

\( = {\left( {2m - \frac{1}{4}} \right)^2} + \frac{{15}}{{16}}.\)

Với mọi m, ta có: \[{\left( {2m - \frac{1}{4}} \right)^2} \ge 0\] nên \[{\left( {2m - \frac{1}{4}} \right)^2} + \frac{{15}}{{16}} \ge \frac{{15}}{{16}}\] hay \(A \ge \frac{{15}}{{16}}.\)

Vậy biểu thức \[A = x_1^2 + x_2^2 - {x_1}{x_2}\] đạt giá trị nhỏ nhất bằng \(\frac{{15}}{{16}}\) khi \[2m - \frac{1}{4} = 0\] hay \(m = \frac{1}{8}.\)