Câu hỏi:

25/08/2024 1,265

Cho các số x, y, z khác 0 thỏa mãn x + y + z = 5 và xy + yz + xz = 8.

Chứng tỏ rằng: \(1 \le x \le \frac{7}{3};\,\,1 \le y \le \frac{7}{3};\,\,1 \le z \le \frac{7}{3}.\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đặt S = y + z và P = yz.

Theo bài, x + y + z = 5 nên ta có x + S = 5, suy ra y + z = S = 5 x.

Theo bài, xy + yz + xz = 8 nên xy + xz + P = 8

Suy ra yz = P = 8 x(y + z) = 8 x(5 x).

Từ đó y, z là nghiệm của phương trình:

t2 (5 x)t + 8 x(5 x) = 0 với S2 4P ≥ 0. (*)

Xét điều kiện (*):

S2 4P ≥ 0

(5 x)2 4[8 x(5 x)] ≥ 0

25 – 10x + x2 – 32 + 4x(5 – x) ≥ 0

25 – 10x + x2 – 32 + 20x – 4x2 ≥ 0

–3x2 + 10x – 7 ≥ 0

3x2 10x + 7 ≤ 0.

Ta có: 3x2 – 10x + 7 = (3x2 – 3x) – (7x – 7)

        = 3x(x – 1) – 7(x – 1) = (x – 1)(3x – 7)

       \( = 3\left( {x - 1} \right)\left( {x - \frac{7}{3}} \right).\)

Với mọi x ta luôn có: \(x - 1 > \left( {x - 1} \right) - \frac{4}{3}\) hay \(x - 1 > x - \frac{7}{3}.\)

Do 3x2 10x + 7 ≤ 0 và \(x - 1 > x - \frac{7}{3}\) nên suy ra:

\(x - \frac{7}{3} \le 0\) và x – 1 ≥ 0 hay \(1 \le x \le \frac{7}{3}.\)

Tương tự ta chứng minh được: \(1 \le y \le \frac{7}{3};\,\,1 \le z \le \frac{7}{3}.\)

Vậy \(1 \le x \le \frac{7}{3};\,\,1 \le y \le \frac{7}{3};\,\,1 \le z \le \frac{7}{3}.\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho phương trình x2 + 2(2m + 1)x 4m2 1 = 0.

a) Chứng tỏ rằng phương trình luôn có hai nghiệm x1, x2 với mọi giá trị của m.

b) Tìm biểu thức liên hệ giữa hai nghiệm x1, x2 không phụ thuộc vào giá trị của m.

Xem đáp án » 25/08/2024 3,738

Câu 2:

Cho phương trình \({x^2} + x - 2 + \sqrt 2 = 0.\)

a) Chứng tỏ rằng phương trình có hai nghiệm x1, x2 trái dấu.

b) Không giải phương trình, tính:

\[A = x_1^2 + x_2^2;\,\,B = x_1^3 + x_2^3;\] \(C = \frac{1}{{{x_1}}} + \frac{1}{{{x_2}}};\) D = |x1 x2|.

Xem đáp án » 25/08/2024 2,641

Câu 3:

Cho phương trình x2 + 2(k + 1)x + k2 + 2k = 0.

a) Tìm các giá trị k để phương trình luôn có hai nghiệm x1, x2 và |x1|.|x2| = 1.

b*) Tìm các giá trị k (k < 0) để phương trình luôn có hai nghiệm x1, x2 trái dấu và nghiệm dương nhỏ hơn giá trị tuyệt đối của nghiệm âm.

Xem đáp án » 25/08/2024 2,487

Câu 4:

Một bác thợ cắt vừa đủ một cây sắt thành các đoạn để hàn lại thành khung của một hình lập phương có cạnh là x (m) và một hình hộp chữ nhật có chiều rộng bằng chiều cao là y (m), chiều dài gấp 5 lần chiều rộng. Tìm độ dài cây sắt, biết x < y, x + y = 0,5 và xy = 0,06.

Xem đáp án » 25/08/2024 2,219

Câu 5:

a) Cho phương trình –x2 + 5kx + 4 = 0. Tìm các giá trị k để phương trình có hai nghiệm x1, x2 thỏa mãn điều kiện

b) Cho phương trình kx2 6(k 1)x + 9(k 3) = 0 (k  ≠ 0). Tìm các giá trị k để phương trình có hai nghiệm x1, x2 thỏa mãn điều kiện x1 + x2 x1x2 = 0.

Xem đáp án » 25/08/2024 1,829

Câu 6:

Một mảnh đất hình chữ nhật có chiều rộng x (m), chiều dài gấp rưỡi chiều rộng. Người ta đã làm một vườn hoa ở trung tâm mảnh đất với diện tích bằng 640 m2 và làm một con đường rộng 2 m xung quanh vườn hoa đó (Hình 10). Hỏi chu vi của mảnh đất đó bằng bao nhiêu mét?

Một mảnh đất hình chữ nhật có chiều rộng x (m), chiều dài gấp rưỡi chiều rộng. Người ta đã làm một vườn hoa ở trung tâm mảnh đất với diện tích bằng 640 m^2 (ảnh 1)

Xem đáp án » 25/08/2024 1,636
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua