Câu hỏi:

13/07/2024 2,557

Mặt trên của tấm đệm có dạng hình tròn ở Hình 29 gợi nên hình ảnh đường tròn ngoại tiếp hình chữ nhật. Biết hình chữ nhật đó có chiều rộng, chiều dài lần lượt là 3 dm, 5 dm. Tính độ dài đường kính mặt trên của tấm đệm, từ đó tính diện tích mặt trên của tấm đệm.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giả sử hình chữ nhật ABCD có AD = BC = 3 dm, AB = CD = 5 dm có đường tròn (O) là đường tròn ngoại tiếp.

Do đó tâm O là giao điểm hai đường chéo và đường chéo AC là đường kính của đường tròn (O).

Xét ∆ADC vuông tại D, theo định lí Pythagore, ta có:

AC2 = AD2 + DC2 = 52 + 32 = 34.

Suy ra

Do đó bán kính của đường tròn (O) là

Diện tích hình tròn bán kính  là:

Vậy mặt trên của tấm nệm có độ dài đường kính  dm và diện tích bằng 8,5π dm2.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giả sử hình chữ nhật ABCD nội tiếp đường tròn (O) có AB = CD = 6 cm và AD = BC = 8 cm.

Khi đó đường chéo AC là đường kính của đường tròn (O).

Xét ∆ADC vuông tại D, theo định lí Pythagore, ta có:

AC2 = AD2 + DC2 = 82 + 62 = 100.

Suy ra AC = 10 cm.

Do đó bán kính của đường tròn (O) là

Diện tích hình tròn bán kính R = 5 cm là:

S1 = πR2 = π.52 = 25π (cm2).

Diện tích hình chữ nhật ABCD là:

S2 = AD.DC = 8.6 = 48 (cm2).

Diện tích phần được tô màu đỏ là:

S = S1 – S2 = 25π – 48 (cm2) ≈ 30,5 (cm2) với π ≈ 3,14.

Lời giải

Ở Hình 28:

đường tròn (O) ngoại tiếp tứ giác ABCD vì đường tròn (O) đi qua các đỉnh A, B, C, D của tứ giác ABCD;

đường tròn (I) ngoại tiếp tứ giác ABMN vì đường tròn (I) đi qua các đỉnh A, B, M, N của tứ giác ABMN.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay