Cho tam giác ABC vuông tại A. Lấy điểm M bất kì trên đoạn AC, đường tròn đường kính CM cắt hai đường thẳng BM và BC lần lượt tại D và N. Chứng minh rằng:
Các đường thẳng AB, MN, CD cùng đi qua một điểm
Quảng cáo
Trả lời:

Xét đường tròn đường kính MC có
(góc nội tiếp chắn nửa đường tròn).
Xét ∆MBC có NC ⊥ MN, suy ra BC ⊥ MN; MC ⊥ AB; MB ⊥ CD.
Hay MN, AB, CD là các đường cao trong ∆MBC.
Khi đó, MN, AB, CD cùng đi qua một điểm (trực tâm H).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Đường tròn ngoại tiếp hình vuông MNPQ có tâm I và có bán kính
Suy ra MP = 2R.
∆MNP vuông tại Q có
suy ra
nên ![]()
Hình vuông MNPQ có độ dài cạnh và đường chéo lần lượt là
và 2R.
Lời giải

Vì MA là tiếp tuyến của (O) nên MA ⊥ OA hay ![]()
Vì I là trung điểm của BC của ∆OBC cân tại O nên OI ⊥ BC hay ![]()
Ta có ∆OAM vuông tại A và ∆OIM vuông tại I cùng nội tiếp đường tròn đường kính MO.
Suy ra AMIO là tứ giác nội tiếp đường tròn đường kính MO.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

