Câu hỏi:
11/07/2024 466
Cho hình vuông ABCD có độ dài cạnh bằng a. Góc vuông xAy thay đổi sao cho tia Ax cắt đoạn thẳng BC tại M và tia Ay cắt đoạn thẳng CD kéo dài tại N.
Gọi O là trung điểm của MN. Chứng minh ABMO và ANDO là các tứ giác nội tiếp.
Quảng cáo
Trả lời:
Vì ∆ABM = ∆ADN nên AM = AN (hai cạnh tương ứng), suy ra ∆NAM cân tại A.
Vì O là trung điểmm của MN nên AO là trung tuyến đồng thời là đường cao của ∆NAM hay AO ⊥ MN.
• ∆ABM vuông tại B và ∆AOM vuông tại O cùng nội tiếp đường tròn đường kính AM.
Suy ra ABMO là tứ giác nội tiếp đường tròn đường kính AM.
• ∆ADN vuông tại D và ∆AON vuông tại O cùng nội tiếp đường tròn đường kính AN.
Suy ra AODN là tứ giác nội tiếp đường tròn đường kính AN.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đường tròn ngoại tiếp hình vuông MNPQ có tâm I và có bán kính
Suy ra MP = 2R.
∆MNP vuông tại Q có suy ra
nên
Hình vuông MNPQ có độ dài cạnh và đường chéo lần lượt là và 2R.
Lời giải
Vì MA là tiếp tuyến của (O) nên MA ⊥ OA hay
Vì I là trung điểm của BC của ∆OBC cân tại O nên OI ⊥ BC hay
Ta có ∆OAM vuông tại A và ∆OIM vuông tại I cùng nội tiếp đường tròn đường kính MO.
Suy ra AMIO là tứ giác nội tiếp đường tròn đường kính MO.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.