Câu hỏi:
12/07/2024 17,621Hình 4 minh hoạ một màn hình BC có chiều cao 1,4 m được đặt thẳng đứng và mép dưới của màn hình cách mặt đất một khoảng BA = 1,8 m. Một chiếc đèn quan sát màn hình được đặt ở vị trí O trên mặt đất. Hãy tính khoảng cách AO sao cho góc quan sát BOC là lớn nhất.
Quảng cáo
Trả lời:
Cách 1. Để góc quan sát BOC là lớn nhất thì là nhỏ nhất.
Giả sử AO = x (m) (x > 0).
Suy ra và
Ta có:
Xét hàm số
Ta có
Do đó f’(x) = 0 ⇔ 1,96x3 – 11,2896x = 0 ⇔ x = 2,4 (vì x > 0).
Bảng biến thiên của hàm số:
x |
0 |
|
2,4 |
|
+∞ |
f’(x) |
|
– |
0 |
+ |
|
f(x) |
|
|
0,96 |
|
+∞
|
Căn cứ bảng biến thiên, ta có tại x = 2,4.
Vậy để góc quan sát BOC là lớn nhất thì khoảng cách AO là 2,4 mét.
Cách 2. Để góc quan sát BOC là lớn nhất thì là lớn nhất.
Giả sử AO = x (m) (x > 0).
Ta có
Xét hàm số
Ta có:
Do đó f’(x) = 0 ⇔ x = 2,4 (do x > 0).
Bảng biến thiên của hàm số:
x |
0 |
|
2,4 |
|
+∞ |
f’(x) |
|
– |
0 |
+ |
|
f(x) |
|
|
|
|
+∞
|
Căn cứ bảng biến thiên, ta có tại x = 2,4.
Vậy để góc quan sát BOC là lớn nhất thì khoảng cách AO là 2,4 mét.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
Đã bán 1,5k
Đã bán 986
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Độ giảm huyết áp của một bệnh nhân được cho bởi công thức G(x) = 0,025x2(30 – x), trong đó x là liều lượng thuốc được tiêm cho bệnh nhân (x được tính bằng miligam) (Nguồn: Giải tích 12 Nâng cao, NXBGD Việt Nam, 2020).
Liều lượng thuốc cần tiêm cho bệnh nhân là bao nhiêu để huyết áp giảm nhanh nhất?
Câu 2:
Khi nuôi cá thí nghiệm trong hồ, một nhà sinh vật học thấy rằng: Nếu trên mỗi đơn vị diện tích của mặt hồ có n con cá thì trung bình mỗi con cá sau một vụ cân nặng:
P(n) = 480 – 20n (gam)
(Nguồn: Giải tích 12 – Nâng cao, NXBGD Việt Nam, 2020).
Hỏi phải thả bao nhiêu cá trên một đơn vị diện tích của mặt hồ để sau một vụ thu hoạch được nhiều cá nhất?
Câu 3:
Một con cá hồi bơi ngược dòng để vượt một khoảng cách là 300 km. Vận tốc dòng nước là 6 km/h. Nếu vận tốc bơi của cá khi nước đứng yên là v (km/h) thì năng lượng tiêu hao của cá trong t giờ được cho bởi công thức
E(v) = cv3t,
trong đó c là một hằng số, E được tính bằng jun. Tìm vận tốc bơi của cá khi nước đứng yên để năng lượng tiêu hao là ít nhất (Nguồn: Giải tích 12 Nâng cao, NXBGD Việt Nam, 2020).
Câu 4:
Một nhà máy sản xuất xe đạp cho thị trường châu Âu theo đơn giá 120 euro (€). Chi phí mỗi ngày của nhà máy được cho bởi hàm số
K(x) = 0,02x3 – 3x2 + 172x + 2 400,
trong đó x là số lượng xe đạp sản xuất được trong ngày hôm đó. Mỗi ngày có thể sản xuất tối đa 130 xe đạp. Giả sử số xe đạp sản xuất được trong mỗi ngày đều được bán hết vào cuối ngày đó.
Gọi G(x) là hàm số biểu diễn lợi nhuận hàng ngày của nhà máy (Nguồn: A. Bigalke et al., Mathematik, Grundkurs ma-1, Cornelsen 2010).
Câu 5:
Một nhà máy cần sản xuất một bể nước không nắp bằng tôn có dạng hình hộp chữ nhật với đáy có chiều dài gấp hai lần chiều rộng và thể tích là Tính chiều rộng của đáy hình hộp chữ nhật đó sao cho số tôn cần sử dụng là nhỏ nhất.
Câu 6:
Một doanh nghiệp dự định sản xuất các hộp đựng nước giải khát có dạng hình trụ với dung tích là 500 cm3 (Hình 5). Hãy tính bán kính đáy và chiều cao của chiếc hộp để diện tích vỏ hộp là nhỏ nhất (Hình 6).
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận