Câu hỏi:
13/07/2024 402
Hai xạ thủ Vinh và Huy cùng tập bắn vào một bia. Xác suất bắn trúng vòng 9 và 10 của xạ thủ Vinh lần lượt là 0,4 và 0,3. Xác suất bắn trúng vòng 9 và 10 của xạ thủ Huy lần lượt là 0,6 và 0,2. Điểm số xạ thủ đạt được khi bắn trúng vòng 10 và 9 lần lượt là 2 và 1. Nếu xạ thủ không bắn trúng hai vòng trên thì được 0 điểm.
Nếu so sánh theo kì vọng thì xạ thủ nào có kết quả bắn tốt hơn?
Hai xạ thủ Vinh và Huy cùng tập bắn vào một bia. Xác suất bắn trúng vòng 9 và 10 của xạ thủ Vinh lần lượt là 0,4 và 0,3. Xác suất bắn trúng vòng 9 và 10 của xạ thủ Huy lần lượt là 0,6 và 0,2. Điểm số xạ thủ đạt được khi bắn trúng vòng 10 và 9 lần lượt là 2 và 1. Nếu xạ thủ không bắn trúng hai vòng trên thì được 0 điểm.
Quảng cáo
Trả lời:
Gọi X và Y lần lượt là số điểm nhận được của xạ thủ Vinh và Huy khi bắn vào bia.
Xác suất xạ thủ Vinh không bắn trúng hai vòng 9 và 10 là: 1 – 0,4 – 0,3 = 0,3.
Bảng phân bố xác suất của X là:
X |
0 |
1 |
2 |
P |
0,3 |
0,4 |
0,3 |
Xác suất xạ thủ Huy không bắn trúng hai vòng 9 và 10 là: 1 – 0,6 – 0,2 = 0,2.
Bảng phân bố xác suất của Y là:
Y |
0 |
1 |
2 |
P |
0,2 |
0,6 |
0,2 |
Kì vọng của X là:
E(X) = 0 . 0,3 + 1 . 0,4 + 2 . 0,3 = 1.
Kì vọng của Y là:
E(Y) = 0 . 0,2 + 1 . 0,6 + 2 . 0,2 = 1.
Ta thấy E(X) = E(Y) nên hai xạ thủ bắn tốt như nhau.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Tập hợp các giá trị có thể của X là: {0; 1; 2}.
Xác suất bạn Dung không được thưởng bóng bay là:
P(X = 0) = 1 – P(X = 1) – P(X = 2) = 1 – 0,2 – 0,1 = 0,7.
Vậy ta có bảng phân bố xác suất cho biến ngẫu nhiên rời rạc X như sau:
X |
0 |
1 |
2 |
P |
0,7 |
0,2 |
0,1 |
Lời giải
Y là biến cố ngẫu nhiên rời rạc và nhận các giá trị trong tập hợp {2; 3}.
Tổng số kết quả có thể xảy ra khi chọn ngẫu nhiên đồng thời 2 thẻ từ hộp là: n(Ω) = 3.
Do chỉ có một trường hợp xảy ra mà số lớn hơn trong hai số ghi trên hai thẻ đó là 2 (một thẻ ghi số 1 và một thẻ ghi số 2) nên số kết quả thuận lợi cho biến cố “Y bằng 2” là 1.
Xác suất của biến cố “Y = 2” là:
Tương tự, ta có
Bảng phân bố xác suất của Y là:
Y |
2 |
3 |
P |
|
|
Kì vọng của Y là:
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.