Hai xạ thủ Vinh và Huy cùng tập bắn vào một bia. Xác suất bắn trúng vòng 9 và 10 của xạ thủ Vinh lần lượt là 0,4 và 0,3. Xác suất bắn trúng vòng 9 và 10 của xạ thủ Huy lần lượt là 0,6 và 0,2. Điểm số xạ thủ đạt được khi bắn trúng vòng 10 và 9 lần lượt là 2 và 1. Nếu xạ thủ không bắn trúng hai vòng trên thì được 0 điểm.
Nếu so sánh theo kì vọng thì xạ thủ nào có kết quả bắn tốt hơn?
                                    
                                                                                                                        Hai xạ thủ Vinh và Huy cùng tập bắn vào một bia. Xác suất bắn trúng vòng 9 và 10 của xạ thủ Vinh lần lượt là 0,4 và 0,3. Xác suất bắn trúng vòng 9 và 10 của xạ thủ Huy lần lượt là 0,6 và 0,2. Điểm số xạ thủ đạt được khi bắn trúng vòng 10 và 9 lần lượt là 2 và 1. Nếu xạ thủ không bắn trúng hai vòng trên thì được 0 điểm.
Quảng cáo
Trả lời:
Gọi X và Y lần lượt là số điểm nhận được của xạ thủ Vinh và Huy khi bắn vào bia.
Xác suất xạ thủ Vinh không bắn trúng hai vòng 9 và 10 là: 1 – 0,4 – 0,3 = 0,3.
Bảng phân bố xác suất của X là:
| 
 X  | 
 0  | 
 1  | 
 2  | 
| 
 P  | 
 0,3  | 
 0,4  | 
 0,3  | 
Xác suất xạ thủ Huy không bắn trúng hai vòng 9 và 10 là: 1 – 0,6 – 0,2 = 0,2.
Bảng phân bố xác suất của Y là:
| 
 Y  | 
 0  | 
 1  | 
 2  | 
| 
 P  | 
 0,2  | 
 0,6  | 
 0,2  | 
Kì vọng của X là:
E(X) = 0 . 0,3 + 1 . 0,4 + 2 . 0,3 = 1.
Kì vọng của Y là:
E(Y) = 0 . 0,2 + 1 . 0,6 + 2 . 0,2 = 1.
Ta thấy E(X) = E(Y) nên hai xạ thủ bắn tốt như nhau.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
 - 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
 - Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
 - Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
 
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Tập hợp các giá trị có thể của X là: {0; 1; 2}.
Xác suất bạn Dung không được thưởng bóng bay là:
P(X = 0) = 1 – P(X = 1) – P(X = 2) = 1 – 0,2 – 0,1 = 0,7.
Vậy ta có bảng phân bố xác suất cho biến ngẫu nhiên rời rạc X như sau:
| 
 X  | 
 0  | 
 1  | 
 2  | 
| 
 P  | 
 0,7  | 
 0,2  | 
 0,1  | 
Lời giải
Gọi X là số tiền thu về cho một lần chơi.
Vì trong một lần chơi thì số tiền thu về có thể là:
⦁ –1 000 đồng nếu không có quả bóng nào cùng số với hộp;
⦁ 1 000 đồng nếu có đúng một quả bóng cùng số với hộp;
⦁ 5 000 đồng nếu cả ba quả bóng đều cùng số với hộp.
Vậy tập giá trị của X là: {–1 000; 1 000; 5 000}.
Tổng số kết quả có thể xảy ra khi đặt 3 quả bóng vào 3 cái hộp là: n(Ω) = 3! = 6.
– Biến cố “X bằng –1 000” xảy ra khi không có quả bóng nào cùng số với hộp. Số kết quả thuận lợi cho biến cố “X bằng –1 000” là: 2 . 1 . 1 = 2.
Xác suất của biến cố “X bằng –1 000” là: 
– Biến cố “X bằng 1 000” xảy ra khi có đúng một quả bóng cùng số với hộp. Số kết quả thuận lợi cho biến cố “X bằng 1 000” là: (1 . 1 . 1) . 3 = 3.
Xác suất của biến cố “X bằng 1 000” là: 
– Biến cố “X bằng 5 000” xảy ra khi cả ba quả bóng đều cùng số với hộp. Số kết quả thuận lợi cho biến cố “X bằng 5 000” là: 1.
Xác suất của biến cố “X bằng 5 000” là: 
Ta có bảng phân bố xác suất của X là:
| 
 X  | 
 –1 000  | 
 1 000  | 
 5 000  | 
| 
 P  | 
 
  | 
 
  | 
 
  | 
Kì vọng của X là:

Ta thấy E(X) > 0 nên nếu so sánh về mặt trung bình thì người chơi có lợi hơn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

