Câu hỏi:
13/07/2024 320
Cho mặt cầu có phương trình (x – 1)2 + (y + 2)2 + (z – 7)2 = 100.
Mỗi điểm A(1; 1; 1), B(9; 4; 7), C(9; 9; 10) nằm trong, nằm ngoài hay nằm trên mặt cầu đó?
Cho mặt cầu có phương trình (x – 1)2 + (y + 2)2 + (z – 7)2 = 100.
Quảng cáo
Trả lời:
Do IA = < 10 nên điểm A(1; 1; 1) nằm trong mặt cầu đó.
Do IB = = 10 nên điểm B(9; 4; 7) nằm trên mặt cầu đó.
Do IC = > 10 nên điểm C(9; 9; 10) nằm ngoài mặt cầu đó.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi tọa độ điểm M là M(x; y; z).
Ta có MA = ;
MB = ;
MC = = 12;
MD = .
Từ đó ta có hệ phương trình .
Lấy (3) – (1) ta được: (7 – x)2 – (3 – x)2 + (9 – y)2 – (– 1 – y)2 = 144 – 36
⇔ – 8x – 20y = – 12 ⇔ 2x + 5y = 3 ⇔ x = (5).
Lấy (4) – (3) ta được: (– 15 – y)2 – (9 – y)2 + (18 – z)2 – (6 – z)2 = 576 – 144
⇔ 48y – 24z = 0 ⇔ 2y – z = 0 ⇔ z = 2y (6).
Thay (5) và (6) vào (2) ta được: + (4 – y)2 + (8 – 2y)2 = 49
⇔ 45y2 – 170y + 125 = 0 ⇔ y = 1 hoặc y = .
+ Với y = 1 thì x = – 1, z = 2. Khi đó M(– 1; 1; 2).
Thử lại bằng cách thay x = – 1, y = 1, z = 2 vào các phương trình (1), (2), (3), (4) ta thấy thỏa mãn.
+ Với y = thì x =
, z =
. Khi đó M
.
Thử lại bằng cách thay x = , y =
, z =
vào các phương trình (1), (2), (3), (4) ta thấy thỏa mãn.
Vậy M(– 1; 1; 2) là điểm cần tìm.
Lời giải
Đường thẳng ID đi qua điểm I và nhận làm vectơ chỉ phương.
Phương trình tham số của đường thẳng ID là (t là tham số).
Giả sử H là vị trí cuối cùng trên đoạn thẳng ID sao cho người đi biển có thể nhìn thấy ánh sáng từ ngọn hải đăng. Khi đó IH = R.
Ta có H ∈ ID nên gọi tọa độ điểm H(21 + 5 100t; 35 + 623t; 50 – 50t).
.
IH = R
⇔ t ≈ ± 0,78.
+ Với t ≈ 0,78, ta có H(3 999; 520,94; 11), = (3 978; 485,94; – 39).
Khi đó nên hai vectơ
cùng hướng, vậy thỏa mãn H thuộc đoạn thẳng ID.
+ Với t ≈ – 0,78, ta có H(– 3 957; – 450,94; 89), = (– 3 978; – 485,94; 39).
Khi đó nên hai vectơ
ngược hướng, vậy H không thuộc đoạn thẳng ID.
Vậy vị trí cuối cùng trên đoạn thẳng ID sao cho người đi biển còn có thể nhìn thấy được ánh sáng từ ngọn hải đăng là điểm H(3 999; 520,94; 11).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.