Câu hỏi:
23/07/2024 290Đọc đoạn trích sau đây và trả lời câu hỏi:
Không có rượu, lấy gì làm cho máu nó chảy! Phải uống thêm chai nữa. Và hắn uống. Nhưng tức quá, càng uống lại càng tỉnh ra. Tỉnh ra, chao ơi, buồn! Hơi rượu không sặc sụa, hắn cứ thoang thoảng thấy hơi cháo hành. Hắn ôm mặt khóc rưng rức. Rồi lại uống. Hắn uống đến say mềm người rồi hắn đi. Hắn ra đi với một con dao ở thắt lưng. Hắn lảm nhảm: “Tao phải đâm chết nó! Tao phải đâm chết nó!”. Nhưng hắn lại cứ thẳng đường mà đi. Cái gì đã làm hắn quên rẽ vào nhà thị Nở? Những thằng điên và những thằng say rượu không bao giờ làm những cái mà lúc ra đi chúng định làm.
(Trích Chí Phèo – Nam Cao)
Tại sao Chí Phèo miệng thì nói đến nhà bà cô Thị Nở nhưng chân lại rẽ vào nhà Bá Kiến?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Chí Phèo miệng nói đến nhà bà cô Thị Nở nhưng lại đi đến nhà Bá Kiến bởi lẽ chính Bá Kiến mới là người gây ra bi kịch cho Chí Phèo. Chính Bá Kiến đã đẩy Chí Phèo vào bước đường cùng không lối thoát. Chọn C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Mỗi học sinh lớp 10B đều chơi bóng đá hoặc bóng chuyền. Biết rằng có 25 bạn chơi bóng đá, 20 bạn chơi bóng chuyền và 10 bạn chơi cả hai môn. Hỏi lớp 10B có bao nhiêu học sinh?
Câu 2:
Giả sử khi một cơn sóng biển đi qua một cái cọc ở ngoài khơi, chiều cao của nước được mô hình hóa bởi hàm số \(h\left( t \right) = 90\cos \left( {\frac{\pi }{{10}}t} \right)\), trong đó \[h\left( t \right)\] là độ cao tính bằng centimét trên mực nước biển trung bình tại thời điểm \(t\) giây. Chiều cao của sóng (tức là khoảng cách theo phương thẳng đứng giữa đáy và đỉnh của sóng) bằng
Câu 3:
Cho hàm số , với \(m\) là tham số. Gọi \({m_1},\,\,{m_2}\,\,\left( {{m_1} < {m_2}} \right)\) là các giá trị của tham số \(m\) thỏa mãn \(2{\max _{\left[ {0\,;\,\,2} \right]}}f\left( x \right) - {\min _{\left[ {0\,;\,\,2} \right]}}f\left( x \right) = 8.\) Tổng \(2{m_1} + 3{m_2}\) bằng
Câu 5:
Cho hàm số \(y = {x^3} + 3m{x^2} - {m^3}\) có đồ thị \(\left( {{C_m}} \right)\) và đường thẳng \(d:y = {m^2}x + 2{m^3}.\) Biết rằng \({m_1},{m_2}\,\,\left( {{m_1} > {m_2}} \right)\) là hai giá trị thực của \(m\) để đường thẳng \(d\) cắt đồ thị \(\left( {{C_m}} \right)\) tại 3 điểm phân biệt có hoành độ \({x_1},{x_2},{x_3}\) thỏa mãn \(x_1^4 + x_2^4 + x_3^4 = 83.\) Khẳng định nào dưới đây đúng?
Câu 6:
Gọi \(S\) là tập hợp các giá trị nguyên của tham số \(m\) để đồ thị hàm số \(y = \frac{{\sqrt {x + 2} }}{{\sqrt {{x^2} - 6x + 2m} }}\) có hai đường tiệm cận đứng. Số phần tử của \(S\) là
Câu 7:
về câu hỏi!