Câu hỏi:
23/07/2024 98Đọc đoạn trích sau và trả lời câu hỏi:
Nắm chặt lấy được cái bờm sóng đúng luồng rồi, ông đò ghì cương lái, bám chắc lấy luồng nước đúng mà phóng nhanh vào cửa sinh, mà lái miết một đường chéo về phía cửa đá ấy. Bốn năm bọn thủy quân cửa ải nước bên bờ trái liền xô ra định níu thuyền lôi vào tập đoàn cửa tử. Ông đò vẫn nhớ mặt bọn này, đứa thì ông tránh mà rảo bơi chèo lên, đứa thì ông đè sấn lên mà chặt đôi ra để mở đường tiến. Những luồng tử đã bỏ hết lại sau thuyền. Chỉ còn vẳng reo tiếng hò của sóng thác luồng sinh. Chúng vẫn không ngớt khiêu khích, mặc dầu cái thằng đá tướng đứng chiến ở cửa vào đã tiu nghỉu cái mặt xanh lè thất vọng thua cái thuyền đã đánh trúng vào cửa sinh nó trấn lấy.
(Người lái đò sông Đà – Nguyễn Tuân)
Vẻ đẹp nào của nhân vật ông lái đò đã được tập trung khắc họa trong đoạn trích trên?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Nhân vật ông lái đò đã được tập trung khắc họa với vẻ đẹp trí dũng tài hoa. Chọn B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Mỗi học sinh lớp 10B đều chơi bóng đá hoặc bóng chuyền. Biết rằng có 25 bạn chơi bóng đá, 20 bạn chơi bóng chuyền và 10 bạn chơi cả hai môn. Hỏi lớp 10B có bao nhiêu học sinh?
Câu 2:
Giả sử khi một cơn sóng biển đi qua một cái cọc ở ngoài khơi, chiều cao của nước được mô hình hóa bởi hàm số \(h\left( t \right) = 90\cos \left( {\frac{\pi }{{10}}t} \right)\), trong đó \[h\left( t \right)\] là độ cao tính bằng centimét trên mực nước biển trung bình tại thời điểm \(t\) giây. Chiều cao của sóng (tức là khoảng cách theo phương thẳng đứng giữa đáy và đỉnh của sóng) bằng
Câu 3:
Cho hàm số , với \(m\) là tham số. Gọi \({m_1},\,\,{m_2}\,\,\left( {{m_1} < {m_2}} \right)\) là các giá trị của tham số \(m\) thỏa mãn \(2{\max _{\left[ {0\,;\,\,2} \right]}}f\left( x \right) - {\min _{\left[ {0\,;\,\,2} \right]}}f\left( x \right) = 8.\) Tổng \(2{m_1} + 3{m_2}\) bằng
Câu 5:
Cho hàm số \(y = {x^3} + 3m{x^2} - {m^3}\) có đồ thị \(\left( {{C_m}} \right)\) và đường thẳng \(d:y = {m^2}x + 2{m^3}.\) Biết rằng \({m_1},{m_2}\,\,\left( {{m_1} > {m_2}} \right)\) là hai giá trị thực của \(m\) để đường thẳng \(d\) cắt đồ thị \(\left( {{C_m}} \right)\) tại 3 điểm phân biệt có hoành độ \({x_1},{x_2},{x_3}\) thỏa mãn \(x_1^4 + x_2^4 + x_3^4 = 83.\) Khẳng định nào dưới đây đúng?
Câu 6:
Gọi \(S\) là tập hợp các giá trị nguyên của tham số \(m\) để đồ thị hàm số \(y = \frac{{\sqrt {x + 2} }}{{\sqrt {{x^2} - 6x + 2m} }}\) có hai đường tiệm cận đứng. Số phần tử của \(S\) là
Câu 7:
về câu hỏi!