Câu hỏi:
23/07/2024 74Đọc đoạn trích sau đây và trả lời câu hỏi:
Cỏ vốn thấp
thấp nhất các loài cây
nên chân thường dẫm đạp
Rồi tới ngày chân tự hỏi
cỏ là gì khi nhìn đỉnh núi
nơi chân chưa từng (và có thể chẳng bao giờ chạm tới)
cỏ đã xanh ngạo nghễ ngàn đời.
(Trần Hữu Việt, Cỏ, vanvn.vn)
Đoạn thơ thể hiện nhận thức mới mẻ nào của nhân vật trữ tình về cỏ?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đoạn thơ thể hiện nhận thức mới mẻ của nhân vật trữ tình về cỏ: Cỏ xanh ngạo nghễ ngàn đời trên đỉnh núi, nơi chân chưa từng và có thể chẳng bao giờ chạm tới → Con người tuy vô cùng nhỏ bé nhưng lại có thể làm những điều phi thường. Chọn C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Mỗi học sinh lớp 10B đều chơi bóng đá hoặc bóng chuyền. Biết rằng có 25 bạn chơi bóng đá, 20 bạn chơi bóng chuyền và 10 bạn chơi cả hai môn. Hỏi lớp 10B có bao nhiêu học sinh?
Câu 2:
Giả sử khi một cơn sóng biển đi qua một cái cọc ở ngoài khơi, chiều cao của nước được mô hình hóa bởi hàm số \(h\left( t \right) = 90\cos \left( {\frac{\pi }{{10}}t} \right)\), trong đó \[h\left( t \right)\] là độ cao tính bằng centimét trên mực nước biển trung bình tại thời điểm \(t\) giây. Chiều cao của sóng (tức là khoảng cách theo phương thẳng đứng giữa đáy và đỉnh của sóng) bằng
Câu 3:
Cho hàm số , với \(m\) là tham số. Gọi \({m_1},\,\,{m_2}\,\,\left( {{m_1} < {m_2}} \right)\) là các giá trị của tham số \(m\) thỏa mãn \(2{\max _{\left[ {0\,;\,\,2} \right]}}f\left( x \right) - {\min _{\left[ {0\,;\,\,2} \right]}}f\left( x \right) = 8.\) Tổng \(2{m_1} + 3{m_2}\) bằng
Câu 5:
Cho hàm số \(y = {x^3} + 3m{x^2} - {m^3}\) có đồ thị \(\left( {{C_m}} \right)\) và đường thẳng \(d:y = {m^2}x + 2{m^3}.\) Biết rằng \({m_1},{m_2}\,\,\left( {{m_1} > {m_2}} \right)\) là hai giá trị thực của \(m\) để đường thẳng \(d\) cắt đồ thị \(\left( {{C_m}} \right)\) tại 3 điểm phân biệt có hoành độ \({x_1},{x_2},{x_3}\) thỏa mãn \(x_1^4 + x_2^4 + x_3^4 = 83.\) Khẳng định nào dưới đây đúng?
Câu 6:
Gọi \(S\) là tập hợp các giá trị nguyên của tham số \(m\) để đồ thị hàm số \(y = \frac{{\sqrt {x + 2} }}{{\sqrt {{x^2} - 6x + 2m} }}\) có hai đường tiệm cận đứng. Số phần tử của \(S\) là
Câu 7:
về câu hỏi!