Câu hỏi:
23/07/2024 58Hỗn hợp X gồm 2 ester đơn chức (không chứa nhóm chức nào khác). Cho 0,08 mol X tác dụng hết với dung dịch \[AgN{O_3}/N{H_3}\]thu được 0,16 mol Ag. Mặt khác thủy phân hoàn toàn 0,08 mol X bằng dung dịch NaOH dư thu được dung dịch chứa 9,34 gam hỗn hợp 2 muối và 1,6 gam \[C{H_3}OH.\]Phần trăm khối lượng ester có phân tử khối lớn hơn trong X là
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
- Cho\[X{\rm{ }} + {\rm{ }}AgN{O_3}\]:
Ta thấy \[{n_{Ag}}:{\rm{ }}{n_X} = {\rm{ }}2{\rm{ }}:{\rm{ }}1 \Rightarrow \]Cả 2 ester đều có đầu HCOO-.
- Cho X + NaOH:
+ Do thu được \[C{H_3}OH\]⟹ 1 este là \[HCOOC{H_3}\]
\( \Rightarrow {n_{HCOOC{H_3}}} = {n_{C{H_3}OH}} = \frac{{1,6}}{{32}} = 0,05\,\,mol\)
+ Sau phản ứng thu được 2 muối → ester còn lại là ester của phenol có dạng \[HCOO{C_6}{H_4}R.\]
\(X\left\{ \begin{array}{l}HCOOC{H_3}:\,0,05\\HCOO{C_6}{H_4}R:\,0,03\end{array} \right. + NaOH \to \left\{ \begin{array}{l}HCOONa:\,0,08\\R{C_6}{H_4}ONa:\,0,03\end{array} \right.\)
\(\begin{array}{l} \Rightarrow R = 15\,(C{H_3} - )\\ \Rightarrow \left\{ \begin{array}{l}HCOOC{H_3}:\,0,05\\HCOO{C_6}{H_4}C{H_3}:\,0,03\end{array} \right.(mol)\\ \Rightarrow \% {m_{HCOO{C_6}{H_4}C{H_3}}} = \frac{{0,03 \cdot 136}}{{0,05 \cdot 60 + 0,03 \cdot 136}}.100\% = 57,63\% \end{array}\)
Đáp án: 57,63%
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Mỗi học sinh lớp 10B đều chơi bóng đá hoặc bóng chuyền. Biết rằng có 25 bạn chơi bóng đá, 20 bạn chơi bóng chuyền và 10 bạn chơi cả hai môn. Hỏi lớp 10B có bao nhiêu học sinh?
Câu 2:
Giả sử khi một cơn sóng biển đi qua một cái cọc ở ngoài khơi, chiều cao của nước được mô hình hóa bởi hàm số \(h\left( t \right) = 90\cos \left( {\frac{\pi }{{10}}t} \right)\), trong đó \[h\left( t \right)\] là độ cao tính bằng centimét trên mực nước biển trung bình tại thời điểm \(t\) giây. Chiều cao của sóng (tức là khoảng cách theo phương thẳng đứng giữa đáy và đỉnh của sóng) bằng
Câu 3:
Cho hàm số , với \(m\) là tham số. Gọi \({m_1},\,\,{m_2}\,\,\left( {{m_1} < {m_2}} \right)\) là các giá trị của tham số \(m\) thỏa mãn \(2{\max _{\left[ {0\,;\,\,2} \right]}}f\left( x \right) - {\min _{\left[ {0\,;\,\,2} \right]}}f\left( x \right) = 8.\) Tổng \(2{m_1} + 3{m_2}\) bằng
Câu 5:
Cho hàm số \(y = {x^3} + 3m{x^2} - {m^3}\) có đồ thị \(\left( {{C_m}} \right)\) và đường thẳng \(d:y = {m^2}x + 2{m^3}.\) Biết rằng \({m_1},{m_2}\,\,\left( {{m_1} > {m_2}} \right)\) là hai giá trị thực của \(m\) để đường thẳng \(d\) cắt đồ thị \(\left( {{C_m}} \right)\) tại 3 điểm phân biệt có hoành độ \({x_1},{x_2},{x_3}\) thỏa mãn \(x_1^4 + x_2^4 + x_3^4 = 83.\) Khẳng định nào dưới đây đúng?
Câu 6:
Gọi \(S\) là tập hợp các giá trị nguyên của tham số \(m\) để đồ thị hàm số \(y = \frac{{\sqrt {x + 2} }}{{\sqrt {{x^2} - 6x + 2m} }}\) có hai đường tiệm cận đứng. Số phần tử của \(S\) là
Câu 7:
về câu hỏi!