Cho 6,72 gam Fe vào dung dịch chứa 0,3 mol \[{H_2}S{O_4}\]đặc nóng, đến khi phản ứng xảy ra hoàn toàn, thu được khí \[S{O_2}\] (sản phẩm khử duy nhất) và dung dịch X. Dung dịch X có thể hoà tan tối đa m gam Cu. Giá trị của m là
Quảng cáo
Trả lời:
Phản ứng:\[2Fe{\rm{ }} + {\rm{ }}6{H_2}S{O_4} \to F{e_2}{\left( {S{O_4}} \right)_3} + {\rm{ }}3S{O_2} \uparrow + {\rm{ }}6{H_2}O\]
Ta có: \[{n_{Fe}} = 0,12{\rm{ }}mol;{\rm{ }}{n_{{H_2}S{O_4}}} = 0,3{\rm{ }}mol\]
Nhận thấy: \(\frac{{0,12}}{2} > \frac{{0,3}}{6}\)→ Khi phản ứng với \({H_2}S{O_4}\)thì Fe dư và \({H_2}S{O_4}\)hết. Sau đó Fe dư lại phản ứng tiếp với muối \(F{e^{3 + }}\).
\( \Rightarrow {n_{S{O_2}}} = 0,15\,mol\)
\[Fe + F{e_2}{\left( {S{O_4}} \right)_3} \to 3FeS{O_4}\]
Theo đó, muối thu được gồm \(\left\{ \begin{array}{l}FeS{O_4}:a\,mol\\F{e_2}{(S{O_4})_3}:\,b\,mol\end{array} \right.\)
\( \Rightarrow \left\{ \begin{array}{l}a + 2b = 0,12\\2a + 2 \cdot 3b = 0,15 \cdot 2\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = 0,06\\b = 0,03\end{array} \right.(mol)\)
Khi hòa tan Cu vào dung dịch X
\(2F{e^{3 + }} + Cu \to C{u^{2 + }} + 2F{e^{2 + }}\)
\(\begin{array}{l} \Rightarrow {n_{Cu}} = \frac{1}{2}{n_{F{e^{3 + }}}} = \frac{1}{2} \cdot 2 \cdot 0,03 = 0,03\,mol\\ \Rightarrow {m_{Cu}} = 0,03 \cdot 64 = 1,92\,gam\end{array}\)
Chọn C.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(f'\left( x \right) = m \cdot \frac{1}{{2\sqrt {x - 1} }}\).
Do \(m \ne 0\) nên \(f'\left( x \right) \ne 0\) và có dấu không thay đổi \(\forall x \in \left( {1\,;\,\, + \infty } \right).\)
TH1: Nếu \(m > 0\) thì \(f'\left( x \right) > 0\,,\,\,\forall x \in \left[ {2;\,\,5} \right].\)
Do đó \({\min _{\left[ {2;\,\,5} \right]}}f\left( x \right) = f(2) = m\,;\,\,{\max _{\left[ {2;\,\,5} \right]}}f\left( x \right) = f(5) = 2m.\)
Suy ra \({\min _{\left[ {2;\,\,5} \right]}}f\left( x \right) + {\max _{\left[ {2;\,\,5} \right]}}f\left( x \right) = {m^2} - 10\)
\( \Leftrightarrow m + 2m = {m^2} - 10\)\( \Leftrightarrow {m^2} - 3m - 10 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{m_1} = - 2}\\{{m_2} = 5}\end{array}} \right.\).
Do \(m > 0\) nên nhận \({m_2} = 5.\)
TH2: Nếu \(m < 0\) thì \(f'\left( x \right) < 0\,,\,\,\forall x \in \left[ {2;\,\,5} \right].\)
Do đó \({\min _{\left[ {2;\,\,5} \right]}}f\left( x \right) = f(5) = 2m\,;\,\,{\max _{\left[ {2;\,\,5} \right]}}f\left( x \right) = f(2) = m.\)
Suy ra \({\min _{\left[ {2;\,\,5} \right]}}f\left( x \right) + {\max _{\left[ {2;\,\,5} \right]}}f\left( x \right) = {m^2} - 10\)
\( \Leftrightarrow 2m + m = {m^2} - 10\)\( \Leftrightarrow {m^2} - 3m - 10 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{m_1} = - 2}\\{{m_2} = 5}\end{array}} \right.\).
Do \(m < 0\) nên nhận \({m_1} = - 2.\)
Vậy \({m_1} + {m_2} = 3.\) Chọn A.
Lời giải
Học sinh đọc ngữ liệu, căn cứ vào các hình ảnh “chàng trai ra đảo đã quên mình, máu xương kia dằng dặc suốt ngàn đời, hồn dân tộc ngàn năm không chịu khuất” để thấy những suy ngẫm, chiêm nghiệm của tác giả, đồng thời cùng với đó là sự trân trọng, tự hào đối với lịch sử bảo vệ biển đảo, bảo vệ Tổ quốc. Học sinh căn cứ tiếp vào câu “Dáng con tàu vẫn hướng mãi ra khơi” để thấy sự tiến về phía trước của thế hệ tương lai, thể hiện trách nhiệm của thế hệ trẻ đối với công cuộc bảo vệ Tổ quốc. Chọn B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.