Câu hỏi:
27/07/2024 400Cho đường tròn (O; R) có đường kính AB. Vẽ dây AC sao cho Lấy điểm M sao cho B là trung điểm của đoạn thẳng OM. Chứng minh:
a) MC là tiếp tuyến của đường tròn (O);
b)
Quảng cáo
Trả lời:
a) Ta có C nằm trên đường tròn (O) đường kính AB nên
Xét ∆ABC có CO là trung tuyến ứng với cạnh AB và nên tam giác ABC vuông tại C, hay
Ta có ∆OAC cân tại O (do OA = OC = R) nên
Mà nên
Xét ∆OBC cân tại O (do OB = OC = R) có nên ∆OBC là tam giác đều
Suy ra CB = OB.
Mà B là trung điểm của OM nên suy ra
Xét ∆COM có CB là trung tuyến ứng với cạnh OM và nên tam giác COM vuông tại C, hay MC ⊥ OC tại C nằm trên đường tròn (O; R).
Vậy MC là tiếp tuyến của đường tròn (O).
b) Ta có B là trung điểm của OM nên OM = 2OB = 2R.
Xét ∆COM vuông tại C, theo định lí Pythagore, ta có: OM2 = OC2 + MC2
Suy ra
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Do Ax, By là tiếp tuyến của đường tròn tâm O đường kính AB nên Ax ⊥ AB, By ⊥ AB, suy ra Ax // By.
Đường tròn (O) có:
⦁ hai tiếp tuyến Ax, CD cắt nhau tại C nên CA = CM;
⦁ hai tiếp tuyến By, CD cắt nhau tại D nên DB = DM.
Xét ∆ANC có AC // BD nên (hệ quả định lí Thalès) suy ra
Do đó MN // AC (định lí Thalès đảo) hay MN // Ax
Mà Ax ⊥ AB nên MN ⊥ AB.
b) Xét ∆ACD có MN // AC nên (hệ quả của định lí Thalès).
Xét ∆ANC có AC // BD nên (hệ quả của định lí Thalès).
Suy ra (tính chất tỉ lệ thức) hay
Xét ∆ABC có NH // AC nên (hệ quả của định lí Thalès).
Do đó, ta có:
Vậy MN = NH.
Lời giải
a) Gọi M là trung điểm của đoạn thẳng BC, khi đó
Xét ∆OAB có OA = OB nên ∆OAB cân tại O, suy ra đường trung tuyến OI đồng thời là đường cao của tam giác, hay OC ⊥ AB tại I.
Ta có ∆BIC vuông tại I có IM là đường trung tuyến ứng với canh huyền BC nên
Ta có ∆BDC vuông tại D có DM là đường trung tuyến ứng với canh huyền BC nên
Từ (1), (2) và (3), suy ra
Do đó bốn đỉnh của tứ giác BDCI cùng nằm trên đường tròn đường kính BC.
b) Đường tròn (C) có hai tiếp tuyến BI, BD cắt nhau tại B nên CB là tia phân giác của góc ICD, hay
Mặt khác, ∆OBC cân tại O (do OB = OC) nên hay
Suy ra mà hai góc này ở vị trí so le trong nên OB // CD.
Lại có BD ⊥ CD nên BD ⊥ OB tại B, mà B nằm trên đường tròn (O)
Vậy BD là tiếp tuyến của đường tròn (O).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Tổng hợp các bài toán thực tế ôn thi vào 10 Toán 9 có đáp án (Phần 2: Hình học)
12 bài tập Một số bài toán thực tế liên quan đến bất đẳng thức có lời giải
Chuyên đề 8: Hình học (có đáp án)
12 bài tập Một số bài toán thực tế liên quan đến bất phương trình bậc nhất một ẩn có lời giải
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận