Câu hỏi:

31/07/2024 2,994

Hình phẳng giới hạn bởi hai đồ thị \(y = \left| x \right|\) và \(y = {x^2}\) quay quanh trục tung tạo nên một vật thể tròn xoay có thể tích bằng 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Hình phẳng giới hạn bởi hai đồ thị \(y = \left| x \right|\) và \(y = {x^2}\) quay quanh trục tung tạo nên một vật thể tròn xoay có thể tích bằng  (ảnh 1)

Phương trình hoành độ giao điểm:

\(\left| x \right| = {x^2} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0 \Rightarrow y = 0}\\{x =  \pm 1 \Rightarrow y = 1}\end{array}} \right..\)

Ta có đồ thị hai hàm số \(y = \left| x \right|\) và \(y = {x^2}\) đều đối xứng qua \[Oy\] nên hình phẳng giới hạn bởi hai đồ thị \(y = \left| x \right|\) và \(y = {x^2}\) quay quanh trục tung tạo nên một vật thể tròn xoay có thể tích bằng thể tích vật thể tròn

xoay khi quay hình phẳng giới hạn bởi hai đường \(x = y\) và \(x = \sqrt y \) quanh xung quanh trục \[Oy.\]

Thể tích vật thể tròn xoay cần tìm là:

\(V = \pi \int\limits_0^1 {\left| {y - {y^2}} \right|dy}  = \pi \int\limits_0^1 {\left( {y - {y^2}} \right)dy}  = \left. {\pi  \cdot \left( {\frac{1}{2}{y^2} - \frac{1}{3}{y^3}} \right)} \right|_0^1 = \frac{\pi }{6}{\rm{. }}\)Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Theo quyết định của Hội nghị lanta (2-1945), Đông Âu thuộc phạm vi ảnh hưởng của Liên Xô. Chọn C.

Câu 2

Lời giải

Muốn phát triển du lịch thì tài nguyên du lịch là quan trọng nhất, các yếu tố khác chỉ là yếu tố bổ sung. Chọn C.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP