Câu hỏi:

31/07/2024 1,329

Cho hàm số \(y = \frac{{{x^2} - x - 2}}{{x - 3}}\) có đồ thị \(\left( C \right).\) Có bao nhiêu tiếp tuyến của đồ thị \(\left( C \right)\) đi qua điểm \(A\left( {4\,;\,\,1} \right)?\)

Đáp án: ……….

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: \({y^\prime } = \frac{{{x^2} - 6x + 5}}{{{{(x - 3)}^2}}}.\)

Gọi \(M\left( {{x_0};\frac{{x_0^2 - {x_0} - 2}}{{{x_0} - 3}}} \right)\) là tọa độ tiếp điểm.

Phương trình tiếp tuyến với \((C)\) tại \(M\) có dạng: \(y = \frac{{x_0^2 - 6{x_0} + 5}}{{{{\left( {{x_0} - 3} \right)}^2}}}\left( {x - {x_0}} \right) + \frac{{x_0^2 - {x_0} - 2}}{{{x_0} - 3}}\)

Tiếp tuyến đi qua \(A(4;1) \Rightarrow 1 = \frac{{x_0^2 - 6{x_0} + 5}}{{{{\left( {{x_0} - 3} \right)}^2}}}\left( {4 - {x_0}} \right) + \frac{{x_0^2 - {x_0} - 2}}{{{x_0} - 3}}\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{x_0} \ne 3}\\{5x_0^2 - 22{x_0} + 17 = 0}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{x_0} = 1}\\{{x_0} = \frac{{17}}{5}}\end{array}} \right.} \right.\)

Vậy có 2 tiếp tuyến cần tìm. Đáp án: 2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Theo quyết định của Hội nghị Ianta (2-1945), Mĩ không được phân chia phạm vi hành hưởng ở địa bàn nào sau đây? 

Xem đáp án » 31/07/2024 10,894

Câu 2:

Polymer được điều chế bằng phản ứng trùng hợp là 

Xem đáp án » 31/07/2024 2,977

Câu 3:

Tìm tất cả các giá trị thực của tham số \(m\) để đồ thị hàm số \(y = {x^3} - 3{x^2}\) cắt đường thẳng \(y = m\) tại ba điểm phân biệt. 

Xem đáp án » 31/07/2024 2,191

Câu 4:

Nhân tố nào đóng vai trò quan trọng nhất đế Đà Năng trở thành trung tâm du lịch quốc gia của cả nước? 

Xem đáp án » 31/07/2024 2,000

Câu 5:

Hình phẳng giới hạn bởi hai đồ thị \(y = \left| x \right|\) và \(y = {x^2}\) quay quanh trục tung tạo nên một vật thể tròn xoay có thể tích bằng 

Xem đáp án » 31/07/2024 1,489

Câu 6:

Biết \(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {4{x^2} - 3x + 1} - ax - b} \right) = 0\) với \[a\,,\,\,b\] là các số hữu t. Tính \(a - 4b.\)

Đáp án: ……….

Xem đáp án » 31/07/2024 1,192

Bình luận


Bình luận