Câu hỏi:

31/07/2024 1,343

Một chiếc cầu được thiết kế như một cung AB của đường tròn (O) với độ dài AB = 40 m và chiều cao MK = 6 m (Hình 35). Tính bán kính của đường tròn chứa cung AMB (làm tròn kết quả đến hàng phần mười của mét).

Media VietJack

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Xét ∆OAB có  nên ∆OAB cân tại O, suy ra đường trung tuyến  đồng thời là đường cao của tam giác, hay OK AB. Mà MK AB nên ba điểm O, K, M thẳng hàng.

Kẻ đường kính MN của đường tròn (O).

Suy ra điểm O thuộc MN và AK=BK=AB2=402=20  m.

Xét ∆AKM và ∆NKB có: AKM^=NKB^=90°; MAK^=MNB^ (hai góc nội tiếp cùng chắn cung MB)

Do đó ∆AKM ∆NKB (g.g)

Suy ra AKNK=MKBK  hay NK=AKBKMK=20206=2003  m.

Độ dài đường kính của đường tròn (O) là: MN=MK+NK=6+2003=2183  m.

Vậy bán kính của đường tròn chứa cung AMB là 2183:2=109336,3 (m).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

a) Xét ∆ABH và ∆ADH có: AHB^=AHD^=90°;

BH = HD (do H là trung điểm của BD);

Cạnh AH chung 

Do đó ∆ABH = ∆ADH (hai cạnh góc vuông).

Suy ra A1^=A2^.

A1^=C2^  (vì cùng phụ với CAH^)  A2^=C1^  (hai góc nội tiếp cùng chắn cung EH)

Suy ra C1^=C2^.

Vậy CH là tia phân giác của góc ACE.

b) Xét đường tròn (O) có O1^  C2^  lần lượt là góc ở tâm và góc nội tiếp cùng chắn cung AH nên O1^=2C2^

ACE^=2C2^  (vì CH là tia phân giác của góc ACE)

Suy ra O1^=ACE^,  mà hai góc này ở vị trí đồng vị

Do đó OH // CE.

Lời giải

Media VietJack

a) (Hình a) Vì MA, MB là các tiếp tuyến của đường tròn (O) nên MA OA và MB OB.

Xét tứ giác OAMB có: AOM^+AMB^+OBM^+AOB^=360°

Suy ra AOB^=360°AOM^AMB^OBM^=360°90°40°90°=140°.

Do đó số đo cung nhỏ AB bằng số đo của góc ở tâm AOB, bằng 140° và số đo cung lớn AB bằng 360° ‒ 140° = 220°.

b) (Hình b) Do số đo cung nhỏ AB bằng 120° suy ra  AOB^=120°.

Lại có MA, MB là hai tiếp tuyến của đường tròn (O) cắt nhau tại M nên MA = MB và OM là tia phân giác của góc AOB nên AOM^=12AOB^=12120°=60°.

Do tam giác OAM vuông tại A nên MA=OAtanAOM^=R3.

Xét ∆OAM và ∆OBM có: OA = OB; MA = MB; OM là cạnh chung

Do đó ∆OAM = ∆OBM (c.c.c) nên S∆OAM = S∆OAM­

Suy ra SOAMB = S∆OAM + S∆OBM­ = 2SOAM.

Vậy SOAMB=212OAMA=212RR3=R23  (đơn vị diện tích).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP