Câu hỏi:

02/08/2024 1,250 Lưu

Trong chương trình "Gặp nhau cuối tuần", nghệ sĩ hài Xuân Bắc đặt ra một tình huống cho giáo sư Cù Trọng Xoay như sau: "Một người có chiều cao từ chân đến mắt là \[1,6{\rm{ }}m.\] Người đó dùng thước và giác kế đo được khoảng cách từ người này đứng cách một cái cây \[10{\rm{ }}m\] và người đó nhìn ngọn cây và gốc cây một góc Vậy chiều cao của cái cây là bao nhiêu?
Trong chương trình

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: \(AH = 1,6\,\;{\rm{m }};\,\,HB = 10\,\;{\rm{m }};\,\,\widehat {BAC} = 30^\circ .\)

Trong tam giác \[AHB\] có: \(\tan \widehat {ABH} = \frac{{AH}}{{BH}} = \frac{{1,6}}{{10}} = 0,16 \Rightarrow \widehat {ABH} = 9^\circ 5'\).

Suy ra \(\widehat {ABC} = 90^\circ - \widehat {ABH} = 80^\circ 55'\); \(\widehat {ACB} = 180^\circ - \left( {\widehat {BAC} + \widehat {ABC}} \right) = 69^\circ 5'\).

Áp dụng định lý sin trong tam giác \[ABC\] có:

\(\frac{{AB}}{{\sin \widehat {ACB}}} = \frac{{CB}}{{\sin \widehat {BAC}}} \Rightarrow CB = \frac{{AB \cdot \sin \widehat {BAC}}}{{\sin \widehat {ACB}}} \approx 5,42\;\,({\rm{m)}}{\rm{. }}\)Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Một người có miếng đất hình tròn có bán kính bằng 5 m. Người này tính trồng cây trên mảnh đất đó, biết mỗi mét vuông trồng cây thu hoạch được 100 nghìn đồng. Tuy nhiên cần có 1 khoảng trống đ (ảnh 1)

Diện tích miếng đất là \({S_1} = \pi {R^2} = 25\pi \left( {{{\rm{m}}^2}} \right)\)

Chọn hệ trục tọa độ \[Oxy\] như hình vẽ.

Ta có phương trình của đường tròn biên là \({x^2} + {y^2} = 25\) nên\[R = 5\,,\,\,AH = 3 \Rightarrow OH = 4.\]

Phương trình của cung tròn nhỏ là \(y = \sqrt {25 - {x^2}} \), với \(4 \le x \le 5.\)

Diện tích phần đất trồng là \({S_2} = 2\int\limits_4^5 {\sqrt {25 - {x^2}} dx} \,\,\left( {\;{{\rm{m}}^2}} \right)\)

Diện tích phần đất trồng cây là \(S = {S_1} - {S_2} = 25\pi  - 2\int\limits_4^5 {\sqrt {25 - {x^2}} dx} \,\,\left( {\;{{\rm{m}}^2}} \right).\)

Số tiền thu được là \(T = 100S = 100\left( {25\pi  - 2\int\limits_4^5 {\sqrt {25 - {x^2}} dx} } \right) \approx 7\,\,445\) (nghìn đồng).

Đáp án: 7445.

Lời giải

Gọi chiều rộng của bể là \(3x\,\,(\;{\rm{m}}).\)

Ta có chiều dài bể là \(4x\,\,(\;{\rm{m}})\) và chiều cao của bể là \(\frac{2}{{3{x^2}}}\,\,({\rm{m}}).\)

Khi đó tổng diện tích bề mặt xây là

\(T = \left( {3x + 4x} \right) \cdot 2 \cdot \frac{2}{{3{x^2}}} + 2 \cdot 3x \cdot 4x - \frac{2}{9} \cdot 3x \cdot 4x\)\( = \frac{{28}}{{3{x^2}}} + \frac{{64{x^2}}}{3} \ge 2 \cdot \sqrt {\frac{{28}}{{3{x^2}}} \cdot \frac{{64{x^2}}}{3}} = \frac{{32\sqrt 7 }}{3}\,\,\left( {\;{{\rm{m}}^2}} \right)\).

Chi phí thấp nhất mà ông Nam phải chi trả để xây dựng bể nước là:

\(T \cdot 980\,\,000 \ge \frac{{32\sqrt 7 }}{3} \cdot 980\,\,000 \approx 27\,\,657\,\,000\) (đồng). Chọn B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP