Câu hỏi:

09/08/2024 373

Cho tứ diện \[OABC\] vuông tại \[O\] có \(OA = 2a,\,\,OB = 3a,\,\,OC = 4a.\) Gọi \[M,\,\,N,\,\,P\] lần lượt là điểm đối xứng với điểm \[O\] qua trung điểm ba cạnh \[AB,\,\,BC,\,\,CA\] của tam giác \[ABC.\] Thể tích của khối chóp \[OMNP\] là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tứ diên \[OABC\] vuông tại \[O\] có \(OA = 2a,\,\,OB = 3a,\,\,OC = 4a.\) Gọi \[M,\,\,N,\,\,P\] lần lượt là điểm đối xứng với điểm  (ảnh 1)

Chọn hệ trục tọa độ như hình vẽ

Ta có \(O\left( {0\,;\,\,0\,;\,\,0} \right),\,\,A\left( {2\,;\,\,0\,;\,\,0} \right),\,\,B\left( {0\,;\,\,3\,;\,\,0} \right),\,\,C\left( {0\,;\,\,0\,;\,\,4} \right),\,\,D\left( {1\,;\,\,0\,;\,\,2} \right)\)

Và \(E\left( {1\,;\,\,\frac{3}{2}\,;\,\,0} \right),\,\,F\left( {0\,;\,\,\frac{3}{2}\,;\,\,2} \right),\,\,P\left( {2\,;\,\,0\,;\,\,4} \right),\,\,M\left( {2\,;\,\,3\,;\,\,0} \right),N\left( {0\,;\,\,3\,;\,\,4} \right).\)

Khi đó \(\overrightarrow {OM} = \left( {2\,;\,\,3\,;\,\,0} \right),\,\,\overrightarrow {ON} = \left( {0\,;\,\,3\,;\,\,4} \right)\)

\( \Rightarrow \left[ {\overrightarrow {OM} \,;\,\,\overrightarrow {ON} } \right] = \left( {12\,;\,\, - 8\,;\,\,6} \right)\) và \[\overrightarrow {OP} = \left( {2\,;\,\,0\,;\,\,4} \right)\].

Thể tích khối tứ diện \[OMNP\] là: \({V_{O.MNP}} = \frac{1}{6}\left| {\left[ {\overrightarrow {OM} \,;\,\,\overrightarrow {ON} } \right] \cdot \overrightarrow {OP} } \right| = 8.\)

Thể tích của tứ diện \[OMNP\] bằng \(8{a^3}.\) Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Một người có miếng đất hình tròn có bán kính bằng 5 m. Người này tính trồng cây trên mảnh đất đó, biết mỗi mét vuông trồng cây thu hoạch được 100 nghìn đồng. Tuy nhiên cần có 1 khoảng trống đ (ảnh 1)

Diện tích miếng đất là \({S_1} = \pi {R^2} = 25\pi \left( {{{\rm{m}}^2}} \right)\)

Chọn hệ trục tọa độ \[Oxy\] như hình vẽ.

Ta có phương trình của đường tròn biên là \({x^2} + {y^2} = 25\) nên\[R = 5\,,\,\,AH = 3 \Rightarrow OH = 4.\]

Phương trình của cung tròn nhỏ là \(y = \sqrt {25 - {x^2}} \), với \(4 \le x \le 5.\)

Diện tích phần đất trồng là \({S_2} = 2\int\limits_4^5 {\sqrt {25 - {x^2}} dx} \,\,\left( {\;{{\rm{m}}^2}} \right)\)

Diện tích phần đất trồng cây là \(S = {S_1} - {S_2} = 25\pi  - 2\int\limits_4^5 {\sqrt {25 - {x^2}} dx} \,\,\left( {\;{{\rm{m}}^2}} \right).\)

Số tiền thu được là \(T = 100S = 100\left( {25\pi  - 2\int\limits_4^5 {\sqrt {25 - {x^2}} dx} } \right) \approx 7\,\,445\) (nghìn đồng).

Đáp án: 7445.

Lời giải

Đồ thị hàm số bậc hai \(y = a{x^2} + bx + c\) đi qua gốc tọa độ \(O\left( {0\,;\,\,0} \right)\) nên \(c = 0.\)

Suy ra công thức hàm số là \(a{x^2} + bx.\)

Mặt khác đồ thị hàm số qua hai điểm \(A\left( {43\,;\,\,0} \right),\,\,B\left( {0,2\,;\,\,1,87} \right)\) nên ta có hệ phương trình:

\[\left\{ {\begin{array}{*{20}{l}}{a \cdot {{\left( {0,2} \right)}^2} + b \cdot 0,2 = 1,87}\\{a \cdot {{43}^2} + b \cdot 43 = 0}\end{array}} \right.\]

Suy ra \(a = - \frac{{187}}{{856}};\,\,b = \frac{{8041}}{{856}}\) nên có hàm số \(y = - \frac{{187}}{{856}}{x^2} + \frac{{8041}}{{856}}x.\)

Hình chiếu của đỉnh \(S\) trên trục hoành là \(H\) nên

\({y_S} = f\left( {{x_S}} \right) = f\left( {{x_H}} \right) = f\left( {\frac{{{x_A}}}{2}} \right) = f\left( {\frac{{43}}{2}} \right) \approx 101\,\,(m).\)

Vậy độ cao từ đỉnh vòm phia trong một trụ của cầu Nhật Tân tới mặt đường là khoảng \(101\;\,\,{\rm{m}}.\)

Đáp án: 101.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay