Câu hỏi:

02/08/2024 736 Lưu

Cho hình chóp \[S.ABCD\] đáy là hình vuông cạnh \[a,{\rm{ }}SA\] vuông góc với mặt phẳng \(\left( {ABCD} \right),\,\,SA = a.\) Gọi \[M,\,\,K\] tương ứng là trọng tâm tam giác \[SAB\,,\,\,SCD\,;{\rm{ }}N\] là trung điểm \[BC.\] Thể tích khối tứ diện \[SMNK\] bằng \(\frac{m}{n} \cdot {a^3}\) với \[m,\,n \in \mathbb{N},\,\,\left( {m,\,\,n} \right) = 1\]. Giá trị \(m + n\) bằng

Đáp án: ……….

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình chóp \[S.ABCD\] đáy là hình vuông cạnh \[a,{\rm{ }}SA\] vuông góc với mặt phẳng \(\left( {ABCD} \right),\,\,SA = a.\) Gọi \[M,\,\,K\] tương ứng là trọng tâm tam giác \[SAB\,,\,\,SCD (ảnh 1)

Ta có \({V_{S.ABCD}} = \frac{1}{3}SA \cdot {S_{ABCD}} = \frac{{{a^3}}}{3}\).

Gọi \(I\) là trung điểm của \[AB,{\rm{ }}J\] là trung điểm của \[CD.\]

Mà \[M,\,\,K\] lần lượt là trọng tâm của tam giác \[SAB,\,\,SCD\] nên \(\frac{{SM}}{{SI}} = \frac{{SK}}{{SJ}} = \frac{2}{3}\).

Suy ra đồng dạng với theo tỉ số \(\frac{2}{3}\). Do đó \({V_{SMNK}} = {V_{K.SMN}} = {\left( {\frac{2}{3}} \right)^2}{V_{J.SIN}} = \frac{4}{9}{V_{J.SIN}}\).

Mặt khác \({V_{S.INJ}} = {V_{J.SIN}} = \frac{1}{4}{V_{S.ABCD}} = \frac{{{a^3}}}{{12}}\) nên \({V_{SMNK}} = \frac{4}{9} \cdot \frac{{{a^3}}}{{12}} = \frac{{{a^3}}}{{27}}\).

Vậy \(m = 1\,,\,\,n = 27 \Rightarrow m + n = 28\).

Đáp án: 28.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Một người có miếng đất hình tròn có bán kính bằng 5 m. Người này tính trồng cây trên mảnh đất đó, biết mỗi mét vuông trồng cây thu hoạch được 100 nghìn đồng. Tuy nhiên cần có 1 khoảng trống đ (ảnh 1)

Diện tích miếng đất là \({S_1} = \pi {R^2} = 25\pi \left( {{{\rm{m}}^2}} \right)\)

Chọn hệ trục tọa độ \[Oxy\] như hình vẽ.

Ta có phương trình của đường tròn biên là \({x^2} + {y^2} = 25\) nên\[R = 5\,,\,\,AH = 3 \Rightarrow OH = 4.\]

Phương trình của cung tròn nhỏ là \(y = \sqrt {25 - {x^2}} \), với \(4 \le x \le 5.\)

Diện tích phần đất trồng là \({S_2} = 2\int\limits_4^5 {\sqrt {25 - {x^2}} dx} \,\,\left( {\;{{\rm{m}}^2}} \right)\)

Diện tích phần đất trồng cây là \(S = {S_1} - {S_2} = 25\pi  - 2\int\limits_4^5 {\sqrt {25 - {x^2}} dx} \,\,\left( {\;{{\rm{m}}^2}} \right).\)

Số tiền thu được là \(T = 100S = 100\left( {25\pi  - 2\int\limits_4^5 {\sqrt {25 - {x^2}} dx} } \right) \approx 7\,\,445\) (nghìn đồng).

Đáp án: 7445.

Lời giải

Gọi chiều rộng của bể là \(3x\,\,(\;{\rm{m}}).\)

Ta có chiều dài bể là \(4x\,\,(\;{\rm{m}})\) và chiều cao của bể là \(\frac{2}{{3{x^2}}}\,\,({\rm{m}}).\)

Khi đó tổng diện tích bề mặt xây là

\(T = \left( {3x + 4x} \right) \cdot 2 \cdot \frac{2}{{3{x^2}}} + 2 \cdot 3x \cdot 4x - \frac{2}{9} \cdot 3x \cdot 4x\)\( = \frac{{28}}{{3{x^2}}} + \frac{{64{x^2}}}{3} \ge 2 \cdot \sqrt {\frac{{28}}{{3{x^2}}} \cdot \frac{{64{x^2}}}{3}} = \frac{{32\sqrt 7 }}{3}\,\,\left( {\;{{\rm{m}}^2}} \right)\).

Chi phí thấp nhất mà ông Nam phải chi trả để xây dựng bể nước là:

\(T \cdot 980\,\,000 \ge \frac{{32\sqrt 7 }}{3} \cdot 980\,\,000 \approx 27\,\,657\,\,000\) (đồng). Chọn B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP