Đọc đoạn trích sau và trả lời câu hỏi:
Làm chi để tiếng về sau,
Nghìn năm ai có khen đâu Hoàng Sào!
Sao bằng lộc trọng quyền cao,
Công danh ai dứt lối nào cho qua?
Nghe lời nàng nói mặn mà.
(Truyện Kiều – Nguyễn Du)
Câu thơ “Nghìn năm ai có khen đâu Hoàng Sào!” có sử dụng biện pháp nghệ thuật gì?
Đọc đoạn trích sau và trả lời câu hỏi:
Làm chi để tiếng về sau,
Nghìn năm ai có khen đâu Hoàng Sào!
Sao bằng lộc trọng quyền cao,
Công danh ai dứt lối nào cho qua?
Nghe lời nàng nói mặn mà.
(Truyện Kiều – Nguyễn Du)
Quảng cáo
Trả lời:
Về điển tích, Hoàng Sào trước là một anh hùng, nhưng sự nghiệp không bền vì hiếu sát, làm mất lòng dân và tướng sĩ, từ anh hùng trở thành giặc loạn, nên Kiều khuyên Từ “nghìn năm ai có khen đâu Hoàng Sào!”. Chọn A.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Diện tích miếng đất là \({S_1} = \pi {R^2} = 25\pi \left( {{{\rm{m}}^2}} \right)\)
Chọn hệ trục tọa độ \[Oxy\] như hình vẽ.
Ta có phương trình của đường tròn biên là \({x^2} + {y^2} = 25\) nên\[R = 5\,,\,\,AH = 3 \Rightarrow OH = 4.\]
Phương trình của cung tròn nhỏ là \(y = \sqrt {25 - {x^2}} \), với \(4 \le x \le 5.\)
Diện tích phần đất trồng là \({S_2} = 2\int\limits_4^5 {\sqrt {25 - {x^2}} dx} \,\,\left( {\;{{\rm{m}}^2}} \right)\)
Diện tích phần đất trồng cây là \(S = {S_1} - {S_2} = 25\pi - 2\int\limits_4^5 {\sqrt {25 - {x^2}} dx} \,\,\left( {\;{{\rm{m}}^2}} \right).\)
Số tiền thu được là \(T = 100S = 100\left( {25\pi - 2\int\limits_4^5 {\sqrt {25 - {x^2}} dx} } \right) \approx 7\,\,445\) (nghìn đồng).
Đáp án: 7445.
Lời giải
Gọi chiều rộng của bể là \(3x\,\,(\;{\rm{m}}).\)
Ta có chiều dài bể là \(4x\,\,(\;{\rm{m}})\) và chiều cao của bể là \(\frac{2}{{3{x^2}}}\,\,({\rm{m}}).\)
Khi đó tổng diện tích bề mặt xây là
\(T = \left( {3x + 4x} \right) \cdot 2 \cdot \frac{2}{{3{x^2}}} + 2 \cdot 3x \cdot 4x - \frac{2}{9} \cdot 3x \cdot 4x\)\( = \frac{{28}}{{3{x^2}}} + \frac{{64{x^2}}}{3} \ge 2 \cdot \sqrt {\frac{{28}}{{3{x^2}}} \cdot \frac{{64{x^2}}}{3}} = \frac{{32\sqrt 7 }}{3}\,\,\left( {\;{{\rm{m}}^2}} \right)\).
Chi phí thấp nhất mà ông Nam phải chi trả để xây dựng bể nước là:
\(T \cdot 980\,\,000 \ge \frac{{32\sqrt 7 }}{3} \cdot 980\,\,000 \approx 27\,\,657\,\,000\) (đồng). Chọn B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.