Câu hỏi:

02/08/2024 1,219

Dựa vào thông tin dưới đây để trả lời các câu từ 109 đến 110:

 Nhân dân ta chiến đấu chống chiến lược “Chiến tranh cục bộ” của Mĩ bằng sức mạnh của cả dân tộc, của tiền tuyến và hậu phương, với ý chí quyết chiến quyết thắng giặc Mĩ xâm lược, mở đầu là các thắng lợi ở Núi Thành (Quảng Nam), Vạn Tường Quảng Ngãi).

 Vạn Tường, được coi là “Ấp Bắc” đối với quân Mĩ, mở đầu cao trào “Tìm Mĩ mà đánh, lùng nguỵ mà diệt” trên khắp miền Nam.

 Sau trận Vạn Tường, khả năng đánh thắng quân Mỹ trong cuộc chiến đấu chống chiến lược “Chiến tranh cục bộ” của quân dân ta tiếp tục được thể hiện trong hai mùa khô.

 Bước vào mùa khô thứ nhất (đông-xuân 1965-1966) với 72 vạn quân (trong đó có hơn 22 vạn quân Mỹ và đồng minh), địch mở đợt phản công với 450 cuộc hành quân, trong đó có 5 cuộc hành quân “tìm diệt” lớn nhằm vào hai hướng chiến lược chính là Đông Nam Bộ và Liên khu V với mục tiêu đánh bại chủ lực Quân giải phóng.

 Quân dân ta trong thế trận chiến tranh nhân dân, với nhiều phương thức tác chiến đã chặn đánh địch trên mọi hướng, tiến công địch khắp mọi nơi.

 Bước vào mùa khô thứ hai (đông-xuân 1966-1967), với lực lượng được tăng cường lên hơn 98 vạn quân (trong đó quân Mĩ và quân đồng minh chiếm hơn 44 vạn), Mĩ mở cuộc phản công với 895 cuộc hành quân, trong đó có ba cuộc hành quân lớn “tìm diệt”, “bình định”; lớn nhất là cuộc hành quân Gianxơn Xiti đánh vào căn cứ Dương Minh Châu (Bắc Tây Ninh), nhằm tiêu diệt quân chủ lực và cơ quan đầu não của ta

(Nguồn: SGK Lịch sử 12, trang 174-175).

Chiến thắng Vạn Tường (18-8-1965) của quân dân ta đã chứng tỏ điều gì? 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chiến thắng Vạn Tường (18-8-1965) của quân dân ta đã chứng tỏ quân và dân miền Nam có khả năng đánh thắng giặc Mĩ xâm lược. Chọn D.

Câu hỏi cùng đoạn

Câu 2:

Ý nghĩa giống nhau cơ bản giữa chiến thắng trận Ấp Bắc (Mỹ Tho) ngày 2-1-1963 và chiến thắng Vạn Tường (Quảng Ngãi) ngày 18-8-1965 là 

Xem lời giải

verified Lời giải của GV VietJack

Chiến thắng Ấp Bắc và chiến thắng và chiến thắng Vạn Tường đều là hai thắng lợi quân sự quan trọng, mở đầu cho cuộc đấu tranh chống lại chiến lược “Chiến tranh đặc biệt” và “Chiến tranh cục bộ” của Mĩ.

Hai chiến thắng này chứng tỏ nhân dân miền Nam có khả năng đánh bại chiến lược chiến tranh của Mĩ, là tiền đề quan trọng cho những chiến thắng tiếp theo. Trong đó:

+ Chiến thắng Ấp Bắc đã bước đầu làm thất bại chiến thuật “trực thăng vận” và “thiết xa vận” của Mĩ. Sau chiến thắng này, trên khắp miền Nam dấy lên phong trào “Thi đua Ấp Bắc, giết giặc lập công”, thúc đẩy phong trào đấu tranh của nhân dân miền Nam phát triển và từng bước làm phá sản chiến lược “Chiến tranh đặc biệt” của Mĩ.

+ Chiến thắng Vạn Tường được coi như “Ấp Bắc” thứ hai đối với quân Mĩ, mở ra cao trào “Tìm Mĩ mà đánh, lùng ngụy mà diệt” trên khắp miền Nam. Chiến thắng này chứng tỏ nhân dân miền Nam có khả năng đánh bại quân Mĩ trong chiến lược “Chiến tranh cục bộ” (1965-1968).

Chọn B.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Một người có miếng đất hình tròn có bán kính bằng 5 m. Người này tính trồng cây trên mảnh đất đó, biết mỗi mét vuông trồng cây thu hoạch được 100 nghìn đồng. Tuy nhiên cần có 1 khoảng trống đ (ảnh 1)

Diện tích miếng đất là \({S_1} = \pi {R^2} = 25\pi \left( {{{\rm{m}}^2}} \right)\)

Chọn hệ trục tọa độ \[Oxy\] như hình vẽ.

Ta có phương trình của đường tròn biên là \({x^2} + {y^2} = 25\) nên\[R = 5\,,\,\,AH = 3 \Rightarrow OH = 4.\]

Phương trình của cung tròn nhỏ là \(y = \sqrt {25 - {x^2}} \), với \(4 \le x \le 5.\)

Diện tích phần đất trồng là \({S_2} = 2\int\limits_4^5 {\sqrt {25 - {x^2}} dx} \,\,\left( {\;{{\rm{m}}^2}} \right)\)

Diện tích phần đất trồng cây là \(S = {S_1} - {S_2} = 25\pi  - 2\int\limits_4^5 {\sqrt {25 - {x^2}} dx} \,\,\left( {\;{{\rm{m}}^2}} \right).\)

Số tiền thu được là \(T = 100S = 100\left( {25\pi  - 2\int\limits_4^5 {\sqrt {25 - {x^2}} dx} } \right) \approx 7\,\,445\) (nghìn đồng).

Đáp án: 7445.

Lời giải

Đồ thị hàm số bậc hai \(y = a{x^2} + bx + c\) đi qua gốc tọa độ \(O\left( {0\,;\,\,0} \right)\) nên \(c = 0.\)

Suy ra công thức hàm số là \(a{x^2} + bx.\)

Mặt khác đồ thị hàm số qua hai điểm \(A\left( {43\,;\,\,0} \right),\,\,B\left( {0,2\,;\,\,1,87} \right)\) nên ta có hệ phương trình:

\[\left\{ {\begin{array}{*{20}{l}}{a \cdot {{\left( {0,2} \right)}^2} + b \cdot 0,2 = 1,87}\\{a \cdot {{43}^2} + b \cdot 43 = 0}\end{array}} \right.\]

Suy ra \(a = - \frac{{187}}{{856}};\,\,b = \frac{{8041}}{{856}}\) nên có hàm số \(y = - \frac{{187}}{{856}}{x^2} + \frac{{8041}}{{856}}x.\)

Hình chiếu của đỉnh \(S\) trên trục hoành là \(H\) nên

\({y_S} = f\left( {{x_S}} \right) = f\left( {{x_H}} \right) = f\left( {\frac{{{x_A}}}{2}} \right) = f\left( {\frac{{43}}{2}} \right) \approx 101\,\,(m).\)

Vậy độ cao từ đỉnh vòm phia trong một trụ của cầu Nhật Tân tới mặt đường là khoảng \(101\;\,\,{\rm{m}}.\)

Đáp án: 101.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay