Câu hỏi:

02/08/2024 247 Lưu

Chọn phát biểu đúng về chất khí. 

A. Ở điều kiện bình thường, chất khí có khả năng dẫn điện, các hạt tải điện là ion dương, ion âm và electron. 
B. Tia sét là dòng điện tự lực trong chất khí khi không khí bị đốt nóng đến mức bị ion hoá. 
C. Tia lửa điện và hồ quang điện là hai dạng phóng điện tự lực trong chất khí có cùng điều kiện xuất hiện. 
D. Tia lửa điện và hồ quang điện là dòng điện trong chất khí khi xuất hiện đều phát sáng và tỏa nhiệt mạnh.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ở điều kiện bình thường, chất khí không dẫn điện. → A sai

Tia sét là dòng điện tự lực trong chất khí khi không khí chịu tác dụng của điện trường cực mạnh đến mức bị ion hoá → B sai

Tia lửa điện và hồ quang điện là hai dạng phóng điện tự lực trong chất khí có cùng điều kiện xuất hiện → C sai

Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Một người có miếng đất hình tròn có bán kính bằng 5 m. Người này tính trồng cây trên mảnh đất đó, biết mỗi mét vuông trồng cây thu hoạch được 100 nghìn đồng. Tuy nhiên cần có 1 khoảng trống đ (ảnh 1)

Diện tích miếng đất là \({S_1} = \pi {R^2} = 25\pi \left( {{{\rm{m}}^2}} \right)\)

Chọn hệ trục tọa độ \[Oxy\] như hình vẽ.

Ta có phương trình của đường tròn biên là \({x^2} + {y^2} = 25\) nên\[R = 5\,,\,\,AH = 3 \Rightarrow OH = 4.\]

Phương trình của cung tròn nhỏ là \(y = \sqrt {25 - {x^2}} \), với \(4 \le x \le 5.\)

Diện tích phần đất trồng là \({S_2} = 2\int\limits_4^5 {\sqrt {25 - {x^2}} dx} \,\,\left( {\;{{\rm{m}}^2}} \right)\)

Diện tích phần đất trồng cây là \(S = {S_1} - {S_2} = 25\pi  - 2\int\limits_4^5 {\sqrt {25 - {x^2}} dx} \,\,\left( {\;{{\rm{m}}^2}} \right).\)

Số tiền thu được là \(T = 100S = 100\left( {25\pi  - 2\int\limits_4^5 {\sqrt {25 - {x^2}} dx} } \right) \approx 7\,\,445\) (nghìn đồng).

Đáp án: 7445.

Lời giải

Gọi chiều rộng của bể là \(3x\,\,(\;{\rm{m}}).\)

Ta có chiều dài bể là \(4x\,\,(\;{\rm{m}})\) và chiều cao của bể là \(\frac{2}{{3{x^2}}}\,\,({\rm{m}}).\)

Khi đó tổng diện tích bề mặt xây là

\(T = \left( {3x + 4x} \right) \cdot 2 \cdot \frac{2}{{3{x^2}}} + 2 \cdot 3x \cdot 4x - \frac{2}{9} \cdot 3x \cdot 4x\)\( = \frac{{28}}{{3{x^2}}} + \frac{{64{x^2}}}{3} \ge 2 \cdot \sqrt {\frac{{28}}{{3{x^2}}} \cdot \frac{{64{x^2}}}{3}} = \frac{{32\sqrt 7 }}{3}\,\,\left( {\;{{\rm{m}}^2}} \right)\).

Chi phí thấp nhất mà ông Nam phải chi trả để xây dựng bể nước là:

\(T \cdot 980\,\,000 \ge \frac{{32\sqrt 7 }}{3} \cdot 980\,\,000 \approx 27\,\,657\,\,000\) (đồng). Chọn B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP