Câu hỏi:

02/08/2024 553 Lưu

Trong thí nghiệm Y-âng về giao thoa ánh sáng, nếu ta dùng ánh sáng đơn sắc màu vàng bước sóng 600 nm thì đoạn MN (đối xứng hai bên vân sáng trung tâm) ta quan sát được 13 vân sáng. Trong đó tại M và N là các vân sáng. Nếu ta dùng ánh sáng đơn sắc màu xanh có bước sóng 500 nm thì trên MN ta quan sát được bao nhiêu vân sáng.

Đáp án: ……….

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Khi sử dụng bức xạ màu vàng: \(MN = 12{i_1} = 12\frac{{{\lambda _1}D}}{a} \Rightarrow {x_M} = - {x_N} = 6\frac{{{\lambda _1}D}}{a}\)

Khi sử dụng bức xạ màu xanh: \( - 6\frac{{{\lambda _1}D}}{a} \le n{i_2} \le 6\frac{{{\lambda _1}D}}{a} \Leftrightarrow - 6{\lambda _1} \le n{\lambda _2} \le 6{\lambda _1} \Leftrightarrow - 7,2 \le n \le 7,2\)

Có 15 giá trị của n nguyên. Có 15 vân sáng.

Đáp án: 15.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Một người có miếng đất hình tròn có bán kính bằng 5 m. Người này tính trồng cây trên mảnh đất đó, biết mỗi mét vuông trồng cây thu hoạch được 100 nghìn đồng. Tuy nhiên cần có 1 khoảng trống đ (ảnh 1)

Diện tích miếng đất là \({S_1} = \pi {R^2} = 25\pi \left( {{{\rm{m}}^2}} \right)\)

Chọn hệ trục tọa độ \[Oxy\] như hình vẽ.

Ta có phương trình của đường tròn biên là \({x^2} + {y^2} = 25\) nên\[R = 5\,,\,\,AH = 3 \Rightarrow OH = 4.\]

Phương trình của cung tròn nhỏ là \(y = \sqrt {25 - {x^2}} \), với \(4 \le x \le 5.\)

Diện tích phần đất trồng là \({S_2} = 2\int\limits_4^5 {\sqrt {25 - {x^2}} dx} \,\,\left( {\;{{\rm{m}}^2}} \right)\)

Diện tích phần đất trồng cây là \(S = {S_1} - {S_2} = 25\pi  - 2\int\limits_4^5 {\sqrt {25 - {x^2}} dx} \,\,\left( {\;{{\rm{m}}^2}} \right).\)

Số tiền thu được là \(T = 100S = 100\left( {25\pi  - 2\int\limits_4^5 {\sqrt {25 - {x^2}} dx} } \right) \approx 7\,\,445\) (nghìn đồng).

Đáp án: 7445.

Lời giải

Gọi chiều rộng của bể là \(3x\,\,(\;{\rm{m}}).\)

Ta có chiều dài bể là \(4x\,\,(\;{\rm{m}})\) và chiều cao của bể là \(\frac{2}{{3{x^2}}}\,\,({\rm{m}}).\)

Khi đó tổng diện tích bề mặt xây là

\(T = \left( {3x + 4x} \right) \cdot 2 \cdot \frac{2}{{3{x^2}}} + 2 \cdot 3x \cdot 4x - \frac{2}{9} \cdot 3x \cdot 4x\)\( = \frac{{28}}{{3{x^2}}} + \frac{{64{x^2}}}{3} \ge 2 \cdot \sqrt {\frac{{28}}{{3{x^2}}} \cdot \frac{{64{x^2}}}{3}} = \frac{{32\sqrt 7 }}{3}\,\,\left( {\;{{\rm{m}}^2}} \right)\).

Chi phí thấp nhất mà ông Nam phải chi trả để xây dựng bể nước là:

\(T \cdot 980\,\,000 \ge \frac{{32\sqrt 7 }}{3} \cdot 980\,\,000 \approx 27\,\,657\,\,000\) (đồng). Chọn B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP