Câu hỏi:
02/08/2024 134Cho 1 cây tự thụ phấn, F1 thu được 56,25% cây cao, 43,75% cây thấp. Cho giao phấn ngẫu nhiên các cây cao F1 với nhau. Về mặt lí thuyết, tỉ lệ cây cao thu được ở F2 là bao nhiêu?
Đáp án: ……….
Quảng cáo
Trả lời:
Bài toán xét đến sự di truyền của 1 tính trạng, F1: 9 : 7 \( \Rightarrow \) Tính trạng di truyền theo quy luật tương tác bổ sung. Quy ước: A-B-: thân cao; A-bb + aaB- + aabb: thân thấp.
- F1 có 16 tổ hợp kiểu hình Þ P đều dị hợp 2 cặp gen Þ P: AaBb.
- P tự thụ: AaBb × AaBb → F1: 9A-B- : 3A-bb : 3aaB- : 1aabb.
Þ Cây cao ở F1: \[\frac{{1{\rm{ }}}}{9}AABB:\frac{2}{9}AABb:\frac{2}{9}AaBB:\frac{4}{9}AaBb.\]
Þ Tỉ lệ giao tử được tạo ra từ cây thân cao F1: \[\frac{4}{9}AB:\frac{2}{9}Ab:\frac{2}{9}aB:\frac{1}{9}ab.\]
Þ Khi cho giao phấn ngẫu nhiên các cây cao F1 với nhau, tỉ lệ các cây thân cao thu được ở F2 là:
\[\begin{array}{l}AB \times \left( {AB,{\rm{ }}Ab,{\rm{ }}aB,{\rm{ }}ab} \right) + Ab \times \left( {AB,{\rm{ }}aB} \right) + aB \times \left( {AB,{\rm{ }}Ab} \right) + ab \times AB\\ = \frac{4}{9} \times 1 + \frac{2}{9} \times \frac{6}{9} + \frac{2}{9} \times \frac{6}{9} + \frac{1}{9} \times \frac{4}{9} = 79,01\% .\end{array}\]
Đáp án: 79,01%.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Diện tích miếng đất là \({S_1} = \pi {R^2} = 25\pi \left( {{{\rm{m}}^2}} \right)\)
Chọn hệ trục tọa độ \[Oxy\] như hình vẽ.
Ta có phương trình của đường tròn biên là \({x^2} + {y^2} = 25\) nên\[R = 5\,,\,\,AH = 3 \Rightarrow OH = 4.\]
Phương trình của cung tròn nhỏ là \(y = \sqrt {25 - {x^2}} \), với \(4 \le x \le 5.\)
Diện tích phần đất trồng là \({S_2} = 2\int\limits_4^5 {\sqrt {25 - {x^2}} dx} \,\,\left( {\;{{\rm{m}}^2}} \right)\)
Diện tích phần đất trồng cây là \(S = {S_1} - {S_2} = 25\pi - 2\int\limits_4^5 {\sqrt {25 - {x^2}} dx} \,\,\left( {\;{{\rm{m}}^2}} \right).\)
Số tiền thu được là \(T = 100S = 100\left( {25\pi - 2\int\limits_4^5 {\sqrt {25 - {x^2}} dx} } \right) \approx 7\,\,445\) (nghìn đồng).
Đáp án: 7445.
Lời giải
Đồ thị hàm số bậc hai \(y = a{x^2} + bx + c\) đi qua gốc tọa độ \(O\left( {0\,;\,\,0} \right)\) nên \(c = 0.\)
Suy ra công thức hàm số là \(a{x^2} + bx.\)
Mặt khác đồ thị hàm số qua hai điểm \(A\left( {43\,;\,\,0} \right),\,\,B\left( {0,2\,;\,\,1,87} \right)\) nên ta có hệ phương trình:
\[\left\{ {\begin{array}{*{20}{l}}{a \cdot {{\left( {0,2} \right)}^2} + b \cdot 0,2 = 1,87}\\{a \cdot {{43}^2} + b \cdot 43 = 0}\end{array}} \right.\]
Suy ra \(a = - \frac{{187}}{{856}};\,\,b = \frac{{8041}}{{856}}\) nên có hàm số \(y = - \frac{{187}}{{856}}{x^2} + \frac{{8041}}{{856}}x.\)
Hình chiếu của đỉnh \(S\) trên trục hoành là \(H\) nên
\({y_S} = f\left( {{x_S}} \right) = f\left( {{x_H}} \right) = f\left( {\frac{{{x_A}}}{2}} \right) = f\left( {\frac{{43}}{2}} \right) \approx 101\,\,(m).\)
Vậy độ cao từ đỉnh vòm phia trong một trụ của cầu Nhật Tân tới mặt đường là khoảng \(101\;\,\,{\rm{m}}.\)
Đáp án: 101.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
Top 10 đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2023 - 2024 có đáp án (Đề 7)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận