Câu hỏi:

04/08/2024 140 Lưu

Cho tam giác \[ABC\] có phương trình các cạnh \(AB:3x - y + 4 = 0,{\rm{ }}AC:x + 2y - 4 = 0,\)\(BC:2x + 3y - 2 = 0\). Khi đó diện tích của \(\Delta ABC\) là 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Tọa độ điểm \(A\) là nghiệm của hệ phương trình:

\(\left\{ {\begin{array}{*{20}{l}}{3x - y + 4 = 0}\\{x + 2y - 4 = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = - \frac{4}{7}}\\{y = \frac{{16}}{7}}\end{array}} \right. \Rightarrow A\left( { - \frac{4}{7}\,;{\mkern 1mu} {\mkern 1mu} \,\frac{{16}}{7}} \right)\).

Tọa độ điểm \(B\) là nghiệm của hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{3x - y + 4 = 0}\\{2x + 3y - 2 = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = - \frac{{10}}{{11}}}\\{y = \frac{{14}}{{11}}}\end{array}} \right. \Rightarrow B\left( { - \frac{{10}}{{11}}\,;{\mkern 1mu} {\mkern 1mu} \,\frac{{14}}{{11}}} \right).\)

Tọa độ điểm \(C\) là nghiệm của hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{x + 2y - 4 = 0}\\{2x + 3y - 2 = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = - 8}\\{y = 6}\end{array}} \right. \Rightarrow C\left( { - 8\,;{\mkern 1mu} {\mkern 1mu} \,6} \right).\)

\( \Rightarrow \overrightarrow {BC} = \left( { - \frac{{78}}{{11}};{\mkern 1mu} {\mkern 1mu} \frac{{52}}{{11}}} \right) \Rightarrow BC = \frac{{26\sqrt {13} }}{{11}}\).

Ta có: \({S_{ABC}} = \frac{1}{2}d\left( {A,{\mkern 1mu} BC} \right) \cdot BC\)\( = \frac{1}{2} \cdot \frac{{\left| {2 \cdot \left( { - \frac{4}{7}} \right) + 3 \cdot \frac{{16}}{7} - 2} \right|}}{{\sqrt {{2^2} + {3^2}} }} \cdot \frac{{26\sqrt {13} }}{{11}}\)\( = \frac{{26}}{{2 \cdot 7\sqrt {13} }} \cdot \frac{{26\sqrt {13} }}{{11}} = \frac{{338}}{{77}}\).

Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trong không gian tọa độ \[Oxyz,\] cho mặt cầu  và điểm \[M\] thay đổi trên mặt cầu. Giá trị lớn nhất của độ dài đoạn thẳng \[OM\] là  	A. 12.	B. 3.	C. 9.	D. 6. (ảnh 1)

Mặt cầu \(\left( S \right)\) có tâm \(I\left( { - 2\,;\,\,1\,;\,\,2} \right)\), bán kính \(R = 3.\)

Với \(M \in \left( S \right)\) ta có \(O{M_{\max }} = OI + R = \sqrt {{{\left( { - 2} \right)}^2} + {1^2} + {2^2}} + 3 = 6\).

Chọn D.

Lời giải

Điểm M là vị trí trùng nhau của hai ánh sáng.

\[{x_M} = {k_1}\frac{{{\lambda _1}D}}{a} \Rightarrow 5,6 = {k_1}\frac{{0,4.2}}{1} \Rightarrow {k_1} = 7\]

Hai vân sáng trùng nhau tại M thoả mãn: \[\frac{{{k_1}}}{{{k_2}}} = \frac{{{\lambda _2}}}{{{\lambda _1}}} \Rightarrow \frac{7}{{{k_2}}} = \frac{{{\lambda _2}}}{{0,4}} \Rightarrow {\lambda _2} = \frac{{2,8}}{{{k_2}}}\mu m\]

\[0,5\mu {\rm{m}} \le {\lambda _2} \le 0,65\mu {\rm{m}} \Rightarrow 0,5 \le \frac{{2,8}}{{{k_2}}} \le 0,65 \Rightarrow 4,3 \le {k_2} \le 5,6 \Rightarrow {k_2} = 5\]

Vậy tại M thì vân sáng bậc 7 của bức xạ λ1 trùng với vân sáng bậc 5 của bức xạ λ2.

Do đó \[{\lambda _2} = \frac{{2,8}}{{{k_2}}} = \frac{{2,8}}{5} = 0,56\,\mu m\]

Tại vị trí điểm \(N\) cách vân trung tâm 8,96 mm có: xN=k2'λ2Da8,96=k2'0,56.21k2'=8 ứng với vân sáng bậc 8 của bức xạ λ2.

Chọn A.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP