Câu hỏi:

04/08/2024 391 Lưu

Cho hình tứ diện đều \[ABCD\] có độ dài các cạnh bằng 1. Gọi \(A',\,\,B',C',D'\) lần lượt là điểm đối xứng của \[A,\,\,B,\,\,C,\,\,D\] qua các mặt phẳng \(\left( {BCD} \right),\left( {ACD} \right),\left( {ABD} \right),\left( {ABC} \right)\). Thể tích của khối tứ diện \(A'B'C'D'\) là

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình tứ diện đều \[ABCD\] có độ dài các cạnh bằng 1. Gọi \(A',\,\,B',C',D'\) lần lượt là điểm đối xứng của \[A,\,\,B,\,\,C,\,\,D\] qua các mặt phẳng  (ảnh 1)

Dễ dàng nhận thấy tứ diện \(A'B'C'D'\) đồng dạng với tứ diện \(ABCD\) theo tỉ số \(k = \frac{{A'B'}}{{AB}}.\)

Gọi \(M,{\mkern 1mu} {\mkern 1mu} \,N\) lần lượt là trng tâm tam giác \(BCD,{\mkern 1mu} {\mkern 1mu} \,ACD\) ta có \(AM \bot \left( {BCD} \right),{\mkern 1mu} {\mkern 1mu} \,BN \bot \left( {ACD} \right)\).

Gọi \(G = AM \cap BN\).

Ta có \(G\) là trọng tâm của tứ diện đều \(ABCD\) nên \(\frac{{AG}}{{AM}} = \frac{3}{4} \Rightarrow \frac{{AG}}{{AA'}} = \frac{3}{8} \Rightarrow \frac{{GA'}}{{GA}} = \frac{5}{3}\).

Áp dụng định lí Thalès, ta có: \(\frac{{GA'}}{{GA}} = \frac{{A'B'}}{{AB}} = \frac{5}{3} = k\)\( \Rightarrow \frac{{{V_{A'B'C'D'}}}}{{{V_{ABCD}}}} = {k^3} = \frac{{125}}{{27}}\).

\(ABCD\) là tứ diện đều cạnh 1 nên \({V_{ABCD}} = \frac{{\sqrt 2 }}{{12}}\).

Vậy \({V_{A'B'C'D'}} = \frac{{125}}{{37}}.\frac{{\sqrt 2 }}{{12}} = \frac{{125\sqrt 2 }}{{324}}\). Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Khi phiên mã mạch khuôn alen B2 sẽ cho mARN có trình tự là:

5’…AUG UAX UGG UXA AGU UXA UUA AUG AUX GUA UAA…3’

Ta thấy có 2 bộ ba AUG mã hoá axit amin foocmin mêtiônin. Chọn D.

Lời giải

Trong không gian tọa độ \[Oxyz,\] cho mặt cầu  và điểm \[M\] thay đổi trên mặt cầu. Giá trị lớn nhất của độ dài đoạn thẳng \[OM\] là  	A. 12.	B. 3.	C. 9.	D. 6. (ảnh 1)

Mặt cầu \(\left( S \right)\) có tâm \(I\left( { - 2\,;\,\,1\,;\,\,2} \right)\), bán kính \(R = 3.\)

Với \(M \in \left( S \right)\) ta có \(O{M_{\max }} = OI + R = \sqrt {{{\left( { - 2} \right)}^2} + {1^2} + {2^2}} + 3 = 6\).

Chọn D.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP