Cho các số dương x, y thỏa mãn \({2^{{x^3} - y + 1}} = \frac{{2x + y}}{{2{x^3} + 4x + 4}}\). Tìm giá trị nhỏ nhất của biểu thức \(P = \frac{7}{y} + \frac{{{x^3}}}{7}\).
Đáp án: ……….
Cho các số dương x, y thỏa mãn \({2^{{x^3} - y + 1}} = \frac{{2x + y}}{{2{x^3} + 4x + 4}}\). Tìm giá trị nhỏ nhất của biểu thức \(P = \frac{7}{y} + \frac{{{x^3}}}{7}\).
Đáp án: ……….
Quảng cáo
Trả lời:
Ta có: \[{2^{{x^3} - \,y\, + \,\,1}} = \frac{{2x + y}}{{2{x^3} + 4x + 4}}\]\( \Leftrightarrow {2^{{x^3}\, + \,2x\, + \,2\, - \,2x\, - \,y\, - \,1}} = \frac{{2x + y}}{{2{x^3} + 4x + 4}}\)
\( \Leftrightarrow \frac{{{2^{{x^3}\, + \,2x\, + \,2}}}}{{{2^{2x\, + \,y}} \cdot 2}} = \frac{{2x + y}}{{2\left( {{x^3} + 2x + 2} \right)}}\)\( \Leftrightarrow {2^{{x^3}\, + \,2x\, + \,2}}\left( {{x^3} + 2x + 2} \right) = {2^{2x\, + \,y}} \cdot \left( {2x + y} \right){\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \,\left( * \right)\)
Xét \(f\left( t \right) = {2^t} \cdot t\,,{\mkern 1mu} {\mkern 1mu} \,t > 0\) ta có: \(f'\left( t \right) = {2^t} + t \cdot {2^t} \cdot \ln 2 > 0,{\mkern 1mu} {\mkern 1mu} \,\forall t > 0\).
Do đó hàm số \(f\left( t \right)\) đồng biến trên \(\left( {0\,;\,\, + \infty } \right)\).
Do đó \(\left( * \right) \Leftrightarrow {x^3} + 2x + 2 = 2x + y \Rightarrow {x^3} = y - 2\).
Khi đó \(P = \frac{7}{y} + \frac{{{x^3}}}{7} = \frac{7}{y} + \frac{{y - 2}}{7} = \frac{7}{y} + \frac{y}{7} - \frac{2}{7} \ge 2\sqrt {\frac{7}{y} \cdot \frac{y}{7}} - \frac{2}{7} = \frac{{12}}{7}\).
Dấu xảy ra \( \Leftrightarrow \frac{7}{y} = \frac{y}{7} \Leftrightarrow y = 7\) (do \(y > 0\)). Do đó \[{P_{\min }} = \frac{{12}}{7} \Leftrightarrow \left\{ \begin{array}{l}x = \sqrt[3]{5}\\y = 7\end{array} \right..{\mkern 1mu} \]
Đáp án: \(\frac{{12}}{7}\).
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
![Trong không gian tọa độ \[Oxyz,\] cho mặt cầu và điểm \[M\] thay đổi trên mặt cầu. Giá trị lớn nhất của độ dài đoạn thẳng \[OM\] là A. 12. B. 3. C. 9. D. 6. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2024/08/blobid8-1722729182.png)
Mặt cầu \(\left( S \right)\) có tâm \(I\left( { - 2\,;\,\,1\,;\,\,2} \right)\), bán kính \(R = 3.\)
Với \(M \in \left( S \right)\) ta có \(O{M_{\max }} = OI + R = \sqrt {{{\left( { - 2} \right)}^2} + {1^2} + {2^2}} + 3 = 6\).
Chọn D.Lời giải
Điểm M là vị trí trùng nhau của hai ánh sáng.
\[{x_M} = {k_1}\frac{{{\lambda _1}D}}{a} \Rightarrow 5,6 = {k_1}\frac{{0,4.2}}{1} \Rightarrow {k_1} = 7\]
Hai vân sáng trùng nhau tại M thoả mãn: \[\frac{{{k_1}}}{{{k_2}}} = \frac{{{\lambda _2}}}{{{\lambda _1}}} \Rightarrow \frac{7}{{{k_2}}} = \frac{{{\lambda _2}}}{{0,4}} \Rightarrow {\lambda _2} = \frac{{2,8}}{{{k_2}}}\mu m\]
Mà \[0,5\mu {\rm{m}} \le {\lambda _2} \le 0,65\mu {\rm{m}} \Rightarrow 0,5 \le \frac{{2,8}}{{{k_2}}} \le 0,65 \Rightarrow 4,3 \le {k_2} \le 5,6 \Rightarrow {k_2} = 5\]
Vậy tại M thì vân sáng bậc 7 của bức xạ λ1 trùng với vân sáng bậc 5 của bức xạ λ2.
Do đó \[{\lambda _2} = \frac{{2,8}}{{{k_2}}} = \frac{{2,8}}{5} = 0,56\,\mu m\]
Tại vị trí điểm \(N\) cách vân trung tâm 8,96 mm có: ứng với vân sáng bậc 8 của bức xạ λ2.
Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.